Skip to main content
Log in

Comprehensive analysis and mitigation strategies for safety issues of sodium-ion batteries

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sodium-ion batteries show great potential as an alternative energy storage system, but safety concerns remain a major hurdle to their mass adoption. This paper analyzes the key factors and mechanisms leading to safety issues, including thermal runaway, sodium dendrite, internal short circuits, and gas release. Several promising solutions are proposed, such as high-safety electrode materials in the cathode and anode, high-safety electrolytes, and external battery management systems. Here in also we emphasize the importance of selecting appropriate analysis methods and developing reliable failure models while suggesting advanced machine learning tools for analysis. With a comprehensive approach, this study offers valuable recommendations to optimize materials and solutions for improving the safety of sodium-ion batteries.

Graphical abstract

摘要

钠离子电池是很有前景的下一代能源存储装置,但其安全问题仍是影响大规模应用的主要障碍。本文讨论了导致钠离子电池安全问题的各种关键因素和机制,包括热失控、钠枝晶、内短路和产气。为了应对这些安全问题,本文提出了几种解决方案,包括使用具有高安全性的阴极和阳极电极材料,采用高安全性电解质,并搭配外部电池管理系统。此外,选择合适的分析方法和开发可靠的失效模型也是非常重要的。先进的机器学习工具也可以用于分析电池失效的原因。上述综合分析可提供有价值的建议,用于优化材料和找到解决方案,最终提高钠离子电池的安全性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hirsh HS, Li Y, Tan DHS, Zhang M, Zhao E, Meng YS. Sodium-ion batteries paving the way for grid energy storage. Adv Energy Mater. 2020;10(32):2001274. https://doi.org/10.1002/aenm.202001274.

    Article  CAS  Google Scholar 

  2. Deng XC, Chen ZX, Cao YL. Transition metal oxides based on conversion reaction for sodium-ion battery anodes. Mater Today Chem. 2018;9:114. https://doi.org/10.1016/j.mtchem.2018.06.002.

    Article  CAS  Google Scholar 

  3. Peng J, Zhang W, Liu QN, Wang JZ, Chou SL, Liu HK, Dou SX. Prussian Blue analogues for sodium-ion batteries: past, present, and future. Adv Mater. 2022;34(15):2108384. https://doi.org/10.1002/adma.202108384.

    Article  CAS  Google Scholar 

  4. Hu GF, Huang PF, Bai ZH, Wang QS, Qi KX. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. eTransportation. 2021;10:100140. https://doi.org/10.1016/j.etran.2021.100140.

    Article  Google Scholar 

  5. Finegan DP, Cooper SJ. Battery safety: data-driven prediction of failure. Joule. 2019;3(11):2599. https://doi.org/10.1016/j.joule.2019.10.013.

    Article  Google Scholar 

  6. Hendricks C, Williard N, Mathew S, Pecht M. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J Power Sourc. 2015;297:113. https://doi.org/10.1016/j.jpowsour.2015.07.100.

    Article  CAS  ADS  Google Scholar 

  7. Gandoman FH, Jaguemont J, Goutam S, Gopalakrishnan R, Firouz Y, Kalogiannis T, Omar N, Van Mierlo J. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges. Appl Energy. 2019;251:113343. https://doi.org/10.1016/j.apenergy.2019.113343.

    Article  CAS  Google Scholar 

  8. Yang C, Xin S, Mai LQ, You Y. Materials design for high-safety sodium-ion battery. Adv Energy Mater. 2021;11(2):2000974. https://doi.org/10.1002/aenm.202000974.

    Article  CAS  Google Scholar 

  9. Shen M, Gao Q. A review on battery management system from the modeling efforts to its multiapplication and integration. Int J Energy Res. 2019;43(10):5042. https://doi.org/10.1002/er.4433.

    Article  Google Scholar 

  10. Liu KL, Li K, Peng Q, Zhang C. A brief review on key technologies in the battery management system of electric vehicles. Front Mech Eng. 2019;14(1):47. https://doi.org/10.1007/s11465-018-0516-8.

    Article  Google Scholar 

  11. Velumani D, Bansal A. Thermal behavior of lithium- and sodium-ion batteries: a review on heat generation, battery degradation, thermal runway—perspective and future directions. Energy Fuels. 2022;36(23):14000. https://doi.org/10.1021/acs.energyfuels.2c02889.

    Article  CAS  Google Scholar 

  12. Bordes A, Marlair G, Zantman A, Chesnaye A, Lore P, Lecocq A. Safety evaluation of a sodium-ion cell: assessment of vent gas emissions under thermal runaway. ACS Energy Lett. 2022;7(10):3386. https://doi.org/10.1021/acsenergylett.2c01667.

    Article  CAS  Google Scholar 

  13. Cao JH, Ling ZY, Lin S, He YJ, Fang XM, Zhang ZG. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite. Chem Eng J. 2022;433:133536. https://doi.org/10.1016/j.cej.2021.133536.

    Article  CAS  Google Scholar 

  14. Li Y, Lu Y, Chen L, Hu YS. Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries. Chin Phys B. 2020;29(4):048201. https://doi.org/10.1088/1674-1056/ab7906.

    Article  CAS  ADS  Google Scholar 

  15. Liu K, Liu YY, Lin DC, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv. 2018;4(6):9820. https://doi.org/10.1126/sciadv.aas9820.

    Article  CAS  ADS  Google Scholar 

  16. Robinson JB, Heenan T, Jervis JR, Tan C, Kendrick E, Brett D, Shearing P. Multiscale tomographic analysis of the thermal failure of Na-ion batteries. J Power Sources. 2018;400:360. https://doi.org/10.1016/j.jpowsour.2018.07.098.

    Article  CAS  Google Scholar 

  17. Zhao WY, Guo M, Zuo ZJ, Zhao XL, Dou HL, Zhang YJ, Li SY, Wu ZC, Shi YY, Ma ZF, Yang XW. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery. Engineering. 2022;11:87. https://doi.org/10.1016/j.eng.2021.08.028.

    Article  CAS  Google Scholar 

  18. Zhao GF, Xu LF, Jiang JW, Mei ZY, An Q, Lv PP, Yang XF, Guo H, Sun XL. COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Nano Energy. 2022;92:106756. https://doi.org/10.1016/j.nanoen.2021.106756.

    Article  CAS  Google Scholar 

  19. Deng Y, Zheng JX, Warren A, Yin JF, Choudhury S, Biswal P, Zhang DH, Archer L. On the reversibility and fragility of sodium metal electrodes. Adv Energy Mater. 2019;9(39):1901651. https://doi.org/10.1002/aenm.201901651.

    Article  CAS  Google Scholar 

  20. Tian HQ, Dai L, Wang L, Liu S. Interface stability control by an electron-blocking interlayer for dendrite-free and long-cycle solid sodium-ion batteries. ACS Sustain Chem Eng. 2022;10(23):7500. https://doi.org/10.1021/acssuschemeng.2c00243.

    Article  CAS  Google Scholar 

  21. Li Xu, Wang XY, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries. New Carbon Mater. 2021;36(1):106. https://doi.org/10.1016/S1872-5805(21)60008-2.

    Article  CAS  Google Scholar 

  22. Bray JM, Doswell CL, Pavlovskaya GE, Chen L, Kishore B, Au H, Alptekin H, Kendrick E, Titirici M, Meersmann T, Britton M. Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imaging. Nat Commun. 2020;11(1):2083. https://doi.org/10.1038/s41467-020-15938-x.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Zhang JJ, Wen HJ, Yue LP, Chai JC, Ma J, Hu P, Ding GL, Wang QF, Liu ZH, Cui GL, Chen LQ. In-situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries. Small. 2017;13(2):1601530. https://doi.org/10.1002/smll.201601530.

  24. Chayambuka K, Mulder G, Danilov DL, Notten P. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater. 2020;10(38):2001310. https://doi.org/10.1002/aenm.202001310.

    Article  CAS  Google Scholar 

  25. Zhang LP, Li XL, Yang MR, Chen WH. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater. 2021;41:522. https://doi.org/10.1016/j.ensm.2021.06.033.

    Article  Google Scholar 

  26. Feng WL, Zhang J, Yusuf, A, Ao X, Shi DF, Etacheri V, Wang DY. Quasi-solid-state sodium-ion hybrid capacitors enabled by UiO-66@PVDF-HFP multifunctional separators: selective charge transfer and high fire safety. Chem Eng J. 2022;427:130919. https://doi.org/10.1016/j.cej.2021.130919.

    Article  CAS  Google Scholar 

  27. Wang W, Gang Y, Peng J, Hu Z, Yan Z, Lai W, Zhu Y, Appadoo D, Ye M, Cao Y, Gu QF, Liu HK, Dou SX, Chou SL. Effect of eliminating water in Prussian Blue cathode for sodium-ion batteries. Adv Funct Mater. 2022;32(25):2111727. https://doi.org/10.1002/adfm.202111727.

    Article  CAS  Google Scholar 

  28. Wang MQ, Wang CY, Fan ZM, Wu GY, Liu L, Huang YD. Aramid nanofiber-based porous membrane for suppressing dendrite growth of metal-ion batteries with enhanced electrochemistry performance. Chem Eng J. 2021;426:131924. https://doi.org/10.1016/j.cej.2021.131924.

    Article  CAS  Google Scholar 

  29. Zhang LT, Tsolakidou C, Mariyappan S, Tarascon J, Trabesinger S. Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry. Energy Storage Mater. 2021;42:12. https://doi.org/10.1016/j.ensm.2021.07.005.

    Article  CAS  Google Scholar 

  30. Liu WJ, Chen XL, Zhang C, Xu H, Sun X, Zheng YH, Yu Y, Li S, Huang YH, Li J. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl Mater Interfaces. 2019;11(26):23207. https://doi.org/10.1021/acsami.9b05005.

    Article  CAS  PubMed  Google Scholar 

  31. Lu ZY, Yang HJ, Guo Y, He P, Wu SC, Yang QH, Zhou HS. Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries. Angew Chem Int Ed. 2022;61(30):202206340. https://doi.org/10.1002/anie.202206340.

    Article  CAS  ADS  Google Scholar 

  32. Chen X, Shen X, Li B, Peng HJ, Cheng XB, Li BQ, Zhang XQ, Huang JQ, Zhang Q. Ion–solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem Int Ed. 2018;57(3):734. https://doi.org/10.1002/anie.201711552.

    Article  CAS  Google Scholar 

  33. Xiang XD, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater. 2015;27(36):5343. https://doi.org/10.1002/adma.201501527.

    Article  CAS  PubMed  Google Scholar 

  34. Xiao J, Xiao L, Tang KK, Wang DD, Long MQ, Gao H, Chen WH, Liu CT, Liu H, Wang GX. Recent progress of emerging cathode materials for sodium ion batteries. Mater Chem Front. 2021;5(10):3735. https://doi.org/10.1039/D1QM00179E.

    Article  CAS  Google Scholar 

  35. Jin T, Li HX, Zhu KJ, Wang PF, Liu P, Jiao LF. Polyanion-type cathode materials for sodium-ion batteries. Chem Soc Rev. 2020;49(8):2342. https://doi.org/10.1039/C9CS00846B.

    Article  PubMed  Google Scholar 

  36. Dai Z, Mani U, Tan HT, Yan Q. Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods. 2017;1(5):1700098. https://doi.org/10.1002/smtd.201700098.

    Article  CAS  Google Scholar 

  37. Ba DL, Zhu WH, Li YY, Liu JP. Synergistically enhancing cycleability and rate performance of sodium titanate nanowire anode via hydrogenation and carbon coating for advanced sodium ion batteries. Rare Met. 2022;41(12):4075. https://doi.org/10.1007/s12598-022-02082-2.

    Article  CAS  Google Scholar 

  38. Li LY, Huang FB, Deng J, Liu P, Wang F, Yao QR, Wang ZM, Zhou HY, Deng JQ. Realizing remarkable sodium storage performance of a Sn-based anode material with an oxide-alloy intergrowth structure. Rare Met. 2022;41(5):1512. https://doi.org/10.1007/s12598-021-01923-w.

    Article  CAS  Google Scholar 

  39. Yang Z, He J, Lai WH, Peng J, Liu XH, He XX, Guo XF, Li L, Qiao Y, Ma JM, Wu MH, Chou SL. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angew Chem Int Ed. 2021;60(52):27086. https://doi.org/10.1002/anie.202112382.

  40. Matios E, Wang H, Wang CL, Li WY. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: a review. Ind Eng Chem Res. 2019;58(23):9758. https://doi.org/10.1021/acs.iecr.9b02029.

    Article  CAS  Google Scholar 

  41. Suo LM, Borodin O, Wang YS, Rong XH, Sun W, Fan XL, Xu SY, Schroeder MA, Cresce AV, Wang F, Yang CY, Hu YS, Xu K, Wang CS. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater. 2017;7(21):1701189. https://doi.org/10.1002/aenm.201701189.

    Article  CAS  Google Scholar 

  42. Mosallanejad B, Malek SS, Ershadi M, Daryakenari AA, Cao Q, Boorboor Ajdari F, Ramakrishna S. Cycling degradation and safety issues in sodium-ion batteries: promises of electrolyte additives. J Electroanal Chem. 2021;895:115505. https://doi.org/10.1016/j.jelechem.2021.115505.

    Article  CAS  Google Scholar 

  43. Yu Y, Che H, Yang X, Deng Y, Li L, Ma ZF. Non-flammable organic electrolyte for sodium-ion batteries. Electrochem Commun. 2020;110:106635. https://doi.org/10.1016/j.elecom.2019.106635.

    Article  CAS  Google Scholar 

  44. Su H, Zhang SW, Liu YM, Yang C, Zhang LX, Xin S, You Y. Na3Zr2Si2PO12 solid-state electrolyte with glass-like morphology for enhanced dendrite suppression. Rare Met. 2022;41(12):4086. https://doi.org/10.1007/s12598-022-02161-4.

    Article  CAS  Google Scholar 

  45. Cui J, Yao SS, Kim J. Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Mater. 2017;7:64. https://doi.org/10.1016/j.ensm.2016.12.005.

    Article  Google Scholar 

  46. Huang HJ, Wei L, Tian T, Cao TD, Cheng F, Chen ZX, Yang ZH, Ge BH, Tian ML, Zhang WX, Niederberger M. Beyond conventional sodium-ion storage mechanisms: a combinational intercalation/conversion reaction mechanism in Ni-ion modified hydrated vanadate for high-rate sodium-ion storage. Energy Storage Mater. 2022;47:579. https://doi.org/10.1016/j.ensm.2022.02.042.

    Article  Google Scholar 

  47. Zhao LF, Hu Z, Lai WH, Tao Y, Peng J, Miao ZC, Wang YX, Chou SL, Liu HK, Dou SX. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater. 2021;11(1):2002704. https://doi.org/10.1002/aenm.202002704.

    Article  CAS  Google Scholar 

  48. Xie F, Xu Z, Guo Z, Titirici M. Hard carbons for sodium-ion batteries and beyond. Prog Energy. 2020;2(4):042002. https://doi.org/10.1088/2516-1083/aba5f5.

    Article  ADS  Google Scholar 

  49. Li ZF, Jian ZL, Wang XF, Rodríguez-Pérez I, Bommier C, Ji XL. Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun. 2017;53(17):2610. https://doi.org/10.1039/C7CC00301C.

    Article  CAS  Google Scholar 

  50. Dou XW, Hasa I, Saurel D, Vaalma C, Wu LM, Buchholz D, Bresser D, Komaba S, Passerini S. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today. 2019;23:87. https://doi.org/10.1016/j.mattod.2018.12.040.

    Article  CAS  Google Scholar 

  51. Jin QZ, Wang KL, Peng PY, Zhang ZC, Cheng SJ, Jiang K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy Storage Mater. 2020;27:43. https://doi.org/10.1016/j.ensm.2020.01.014.

    Article  Google Scholar 

  52. Ding CF, Huang LB, Lan JL, Yu YH, Zhong WH, Yang XP. Superresilient hard carbon nanofabrics for sodium-ion batteries. Small. 2020;16(11):1906883. https://doi.org/10.1002/smll.201906883.

    Article  CAS  Google Scholar 

  53. Wang ZH, Feng X, Bai Y, Yang HY, Dong RQ, Wang XR, Xu HJ, Wang QY, Li H, Gao HQ, Wu C. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv Energy Mater. 2021;11(11):2003854. https://doi.org/10.1002/aenm.202003854.

    Article  CAS  Google Scholar 

  54. Feng YF, Shen JN, Ma ZF, He YJ. Equivalent circuit modeling of sodium-ion batteries. J Energy Storage. 2021;43:103233. https://doi.org/10.1016/j.est.2021.103233.

    Article  Google Scholar 

  55. Guo XN, Guo S, Wu CW, Li JY, Liu CT, Chen WH. Intelligent monitoring for safety-enhanced lithium-ion/sodium-ion batteries. Adv Energy Mater. 2023;13(10):2203903. https://doi.org/10.1002/aenm.202203903.

    Article  CAS  Google Scholar 

  56. Li YM, Hu YS, Qi XG, Rong XH, Li H, Huang XJ, Chen LQ. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater. 2016;5:191. https://doi.org/10.1016/j.ensm.2016.07.006.

    Article  Google Scholar 

  57. Chen A, Zhang X, Zhou Z. Machine learning: accelerating materials development for energy storage and conversion. InfoMat. 2020;2(3):553. https://doi.org/10.1002/inf2.12094.

    Article  CAS  Google Scholar 

  58. Darbar D, Bhattacharya I. Application of machine learning in battery: state of charge estimation using feed forward neural network for sodium-ion battery. Electrochem. 2022;3(1):42. https://doi.org/10.1016/j.gee.2022.10.002.

    Article  CAS  Google Scholar 

  59. Oral B, Tekin B, Eroglu D, Yildirim R. Performance analysis of Na-ion batteries by machine learning. J Power Sources. 2022;549:232126. https://doi.org/10.1016/j.jpowsour.2022.232126.

    Article  CAS  Google Scholar 

  60. Dave A, Mitchell J, Kandasamy K, Wang H, Burke S, Paria B, Póczos B, Whitacre J, Viswanathan V. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell Rep Phys Sci. 2020;1(12):100264. https://doi.org/10.1016/j.xcrp.2020.100264.

    Article  CAS  Google Scholar 

  61. Zhou Z. Journal of materials chemistry a and materials advances editor’s choice web collection: “Machine learning for materials innovation.” J Mater Chem A. 2021;9(3):1295. https://doi.org/10.1039/D0TA90285C.

    Article  MathSciNet  CAS  Google Scholar 

  62. Qian JF, Wu C, Cao YL, Ma ZF, Huang YH, Ai XP, Yang HX. Prussian Blue cathode materials for sodium-ion batteries and other ion batteries. Adv Energy Mater. 2018;8(17):1702619. https://doi.org/10.1002/aenm.201702619.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52202286, 52250710680, 51971124, 52171217, 52172173 and 51872071), Natural Science Foundation of Anhui Province for Distinguished Young Scholar (No. 2108085J25), Zhejiang Provincial Natural Science Foundation of China (No. LZ21E010001), Science and Technology Project of State Grid Corporation of China (No. 5419-202158503A-0-5-ZN), and Wenzhou Natural Science Foundation (Nos. G20220016 and ZG2022032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Lei Chou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Xian, XL., Dou, SX. et al. Comprehensive analysis and mitigation strategies for safety issues of sodium-ion batteries. Rare Met. 43, 1343–1349 (2024). https://doi.org/10.1007/s12598-023-02347-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02347-4

Keywords

Navigation