Skip to main content
Log in

Carbon nanotube-carbon black/CaCu3Ti4O12 ternary metacomposites with tunable negative permittivity and thermal conductivity fabricated by spark plasma sintering

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metacomposites with negative permittivity usually possess huge dielectric loss, showing potential for micro-wave attenuation devices where huge heat would generate. Herein, carbon nanotube-carbon black/CaCu3Ti4O12 (CNT-CB/CCTO) ternary metacomposites were fabricated by spark plasma sintering. The CNT-CB dual-phase filler was pre-pared through electrostatic self-assembly process in order to construct an effective 3-dimensional (3D) carbon network in CCTO matrix. The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt% which accompanied with an essential change of conduction mechanism. The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network, described by Drude model. The problem of heat transport, generally occurring in negative permittivity materials, has been solved and optimized in obtained ternary metacomposites benefitting from the substantially high thermal conductivity (9.49–2.00 W·m−1·K−1) and diffusivity (2.74–1.22 mm2·s−1). This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus.

Graphical abstract

摘要

具有负介电常数的超复合材料通常具有巨大的介电损耗, 在微波衰减等应用中将产生巨大的热量。本文采用放电等离子烧结法制备了碳纳米管-炭黑/钛酸铜钙 (CNT-CB/CCTO) 三元超复合材料。通过静电自组装工艺制备CNT-CB双相填料, 从而在CCTO基体中构建有效的三维 (3D) 碳网络。CNT-CB/CCTO复合材料的逾渗阈值为12.52 wt%, 伴随着电导机制由跳跃电导到类金属电导的本质变化。负介电常数频谱可由Drude模型描述, 来源于三维碳网络的低频等离振荡。受益于高的热导率 (约9.49–2 W m−1 K−1) 和扩散率 (约2.74–1.22 mm2 s−1), 通常出现在负介电常数材料中的热传输问题可以得到解决和优化。这项工作将推动超复合材料在新型电子器件和电磁设备上的实际应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rizza C, Castaldi G, Galdi V. Short-pulsed metamaterials. Phys Rev Lett. 2022;128(25):257402. https://doi.org/10.1103/PhysRevLett.128.257402.

    Article  CAS  Google Scholar 

  2. Eichelberg A, Watkins A, Bilal O. Metamaterials with reprogrammable reciprocity. Phys Rev Appl. 2022;18(5):054049. https://doi.org/10.1103/PhysRevApplied.18.054049.

    Article  CAS  Google Scholar 

  3. Zhang X, Cui T. Extensible on-chip mode manipulations based on metamaterials. Light-Sci Appl. 2022;11(1):200. https://doi.org/10.1038/s41377-022-00901-w.

    Article  CAS  Google Scholar 

  4. Qian S, Liu G, Yan M, Wu C. Lightweight, self-cleaning and refractory FeCo@MoS2 PVA aerogels: from electromagnetic wave-assisted synthesis to flexible electromagnetic wave absorption. Rare Met. 2023;42(4):1294. https://doi.org/10.1007/s12598-022-02191-y.

    Article  CAS  Google Scholar 

  5. Qian C, Wang Z, Qian H, Cai T, Zheng B, Lin X, Shen Y, Kaminer I, Li E, Chen H. Dynamic recognition and mirage using neuro-metamaterials. Nat Commun. 2022;13(1):2694. https://doi.org/10.1038/s41467-022-30377-6.

    Article  CAS  Google Scholar 

  6. Gao P, Jia C, Cao W, Wang C, Xu G, Liang D, Cui Z. Dielectric properties of AlN/Mo composite ceramics prepared by spark plasma sintering method at different processing conditions. Rare Met. 2022;41(4):1369. https://doi.org/10.1007/s12598-015-0486-5.

    Article  CAS  Google Scholar 

  7. Shi Z, Fan R, Yan K, Sun K, Zhang M, Wang C, Liu X, Zhang X. Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv Funct Mater. 2013;23(33):4123. https://doi.org/10.1002/adfm.201202895.

    Article  CAS  Google Scholar 

  8. Shi Z, Fan R, Zhang Z, Qian L, Gao M, Zhang M, Zheng L, Zhang X, Yin L. Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater. 2012;24(17):2349. https://doi.org/10.1002/adma.201200157.

    Article  CAS  Google Scholar 

  9. Shi Z, Chen S, Sun K, Wang X, Fan R, Wang X. Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl Phys Lett. 2014;104(25):252908. https://doi.org/10.1063/1.4885550.

    Article  CAS  Google Scholar 

  10. Cheng C, Liu Y, Ma R, Fan R. Nickel/yttrium iron garnet metacomposites with adjustable negative permittivity behavior toward electromagnetic shielding application. Compos Part a-Appl S. 2022;155:106842. https://doi.org/10.1016/j.compositesa.2022.106842.

    Article  CAS  Google Scholar 

  11. Zhang C, Shi Z, Mao F, Yang C, Zhu X, Yang J, Zuo H, Fan R. Flexible polyimide nanocomposites with dc bias induced excellent dielectric tunability and unique nonpercolative negative-k toward intrinsic metamaterials. ACS Appl Mater Inter. 2018;10(31):26713. https://doi.org/10.1021/acsami.8b09063.

    Article  CAS  Google Scholar 

  12. Yang P, Sun K, Wu Y, Wu H, Yang X, Wu X, Du H, Fan R. Negative permittivity behaviors derived from dielectric resonance and plasma oscillation in percolative bismuth ferrite/silver composites. J Phys Chem C. 2022;126(30):12889. https://doi.org/10.1021/acs.jpcc.2c03543.

    Article  CAS  Google Scholar 

  13. Cheng C, Jiang Y, Sun X, Shen J, Wang T, Fan G, Fan R. Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites. Compos Part a-Appl S. 2020;130:105753. https://doi.org/10.1016/j.compositesa.2019.105753.

    Article  CAS  Google Scholar 

  14. Xu J, Li Z, Pan X, Wen X, Cao J, Gong W, Yang S, Lei M, Yao F, Bi K. Ultra-wideband electrostrictive mechanical antenna. Adv Funct Mater. 2023;33(8):2210868. https://doi.org/10.1002/adfm.202210868.

    Article  CAS  Google Scholar 

  15. Zhang Z, Li Z, Zhao Y, Bi X, Zhang Z, Long Z, Liu Z, Zhang L, Cai W, Liu Y, Fan R. Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater. 2022;5(4):3176. https://doi.org/10.1007/s42114-022-00445-y.

    Article  CAS  Google Scholar 

  16. Xu J, Bi K, Zhang R, Hao Y, Lan C, Mcdonald-Maier K, Zhai X, Zhang Z, Huang S. A small-divergence-angle orbital angular momentum metasurface antenna. Research. 2019. https://doi.org/10.34133/2019/9686213.

    Article  Google Scholar 

  17. Fan G, Wang Z, Sun K, Liu Y, Fan R. Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol. 2021;61:125. https://doi.org/10.1016/j.jmst.2020.06.013.

    Article  CAS  Google Scholar 

  18. Xie P, Wang Z, Sun K, Cheng C, Liu Y, Fan R. Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl Phys Lett. 2017;111(11):112903. https://doi.org/10.1063/1.4994234.

    Article  CAS  Google Scholar 

  19. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z. Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Ma. 2022;5(1):419. https://doi.org/10.1007/s42114-021-00378-y.

    Article  CAS  Google Scholar 

  20. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa T, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Ma. 2022;5(2):679. https://doi.org/10.1007/s42114-022-00479-2.

    Article  Google Scholar 

  21. Liu M, Wu H, Wu Y, Xie P, Pashameah R, Abo-Dief H, El-Bahy S, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R. The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Ma. 2022;5(3):2021. https://doi.org/10.1007/s42114-022-00541-z.

    Article  CAS  Google Scholar 

  22. Xu X, Yao F, Ali O, Xie W, Mahmoud S, Xie P, El-Bahy S, Huang M, Liu C, Fan R, Guo Z, Du A, Estevez D, Qin F, Peng H, Young D, Gu H. Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv Compos Hybrid Ma. 2022;5(3):2002. https://doi.org/10.1007/s42114-022-00538-8.

    Article  CAS  Google Scholar 

  23. Liu Y, Cheng C, Sun W, Zhang Z, Ma R, Zhou J, Wang J, Wang T, Zheng Q, Du Y, Shen J, Fan R. Negative permittivity behavior of carbon fibre/alumina ceramic composites prepared by hot-press sintering. Ceram Int. 2022;48(7):10031. https://doi.org/10.1016/j.ceramint.2021.12.212.

    Article  CAS  Google Scholar 

  24. Sun K, Yang P, He Q, Fan R, Wang Z, Tian J, Yang X, Duan W, Wu X, Wang Z. Synergistic effect of dielectric resonance and plasma oscillation on negative permittivity behavior in La1-xSrxMnO3 single-phase ceramic. Ceram Int. 2022;48(6):8417–22. https://doi.org/10.1016/j.ceramint.2021.12.049.

    Article  CAS  Google Scholar 

  25. Fan G, Feng T, Qu Y, Hao C, Liu Y. Dielectric properties and negative permittivity performance modulated by dual fillers in CNTs/TiN/CaCu3Ti4O12 ternary composites. Ceram Int. 2022;48(19):28135. https://doi.org/10.1016/j.ceramint.2022.06.118.

    Article  CAS  Google Scholar 

  26. Li W, Guler U, Kinsey N, Naik G, Boltasseva A, Guan JG, Shalaev V, Kildishev A. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv Mater. 2014;26(47):7959. https://doi.org/10.1002/adma.201401874.

    Article  CAS  Google Scholar 

  27. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R, Wang J. Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. J Materiomics. 2020;6(1):145. https://doi.org/10.1016/j.jmat.2020.01.007.

    Article  Google Scholar 

  28. Yin R, Zhang Y, Zhao W, Huang X, Li X, Qian L. Graphene platelets/aluminium nitride metacomposites with double percolation property of thermal and electrical conductivity. J Eur Ceram Soc. 2018;38(14):4701. https://doi.org/10.1016/j.jeurceramsoc.2018.06.036.

    Article  CAS  Google Scholar 

  29. Sun K, Zhang Z, Qian L, Dang F, Zhang X, Fan R. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites. Appl Phys Lett. 2016;108(6):061903. https://doi.org/10.1063/1.4941758.

    Article  CAS  Google Scholar 

  30. Qu Y, Wu Y, Fan G, Xie P, Liu Y, Zhang Z, Xin J, Jiang Q, Sun K, Fan R. Tunable radio-frequency negative permittivity of Carbon/CaCu3Ti4O12 metacomposites. J Alloy Compd. 2020;834:155164. https://doi.org/10.1016/j.jallcom.2020.155164.

    Article  CAS  Google Scholar 

  31. Cheng C, Fan R, Wang Z, Shao Q, Guo X, Xie P, Yin Y, Zhang Y, An L, Lei Y, Ryu J, Shankar A, Guo Z. Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon. 2017;125:103. https://doi.org/10.1016/j.carbon.2017.09.037.

    Article  CAS  Google Scholar 

  32. Cheng C, Liu Y, Shi S, Ma R, Wang T, Zheng Q, Zhao Y, Yu X, Shen J, Fan R. Negative permittivity behavior in carbon fibre/silicon nitride ceramic composites prepared by spark plasma sintering. Ceram Int. 2021;47(24):35201. https://doi.org/10.1016/j.ceramint.2021.09.063.

    Article  CAS  Google Scholar 

  33. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R. Permittivity transition from positive to negative in acrylic polyurethane-aluminum composites. Compos Sci Technol. 2020;188:107969. https://doi.org/10.1016/j.compscitech.2019.107969.

    Article  CAS  Google Scholar 

  34. Zhou Y, Qu Y, Yin L, Cheng W, Huang Y, Fan R. Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos Sci Technol. 2022;223:109415. https://doi.org/10.1016/j.compscitech.2022.109415.

    Article  CAS  Google Scholar 

  35. Qu Y, Wang Z, Xie P, Wang Z, Fan R. Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol. 2022;217:109092. https://doi.org/10.1016/j.compscitech.2021.109092.

    Article  CAS  Google Scholar 

  36. Fan G, Wang Z, Ren H, Liu Y, Fan R. Dielectric dispersion of copper/rutile cermets: Dielectric resonance, relaxation, and plasma oscillation. Scripta Mater. 2021;190:1. https://doi.org/10.1016/j.scriptamat.2020.08.027.

    Article  CAS  Google Scholar 

  37. Fan G, Zhao Y, Xin J, Zhang Z, Xie P, Cheng C, Qu Y, Liu Y, Sun K, Fan R. Negative permittivity in titanium nitride-alumina composite for functionalized structural ceramics. J Am Ceram Soc. 2020;103(1):403. https://doi.org/10.1111/jace.16763.

    Article  CAS  Google Scholar 

  38. Yin R, Wu H, Sun K, Li X, Yan C, Zhao W, Guo Z, Qian L. Fabrication of graphene network in alumina ceramics with adjustable negative permittivity by spark plasma sintering. J Phys Chem C. 2018;122(3):1791. https://doi.org/10.1021/acs.jpcc.7b11177.

    Article  CAS  Google Scholar 

  39. Chen M, Wang X, Zhang Z, Sun K, Cheng C, Dang F. Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency. Mater Design. 2016;97:454. https://doi.org/10.1016/j.matdes.2016.02.119.

    Article  CAS  Google Scholar 

  40. Xie P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H, Liu Y, Li T, Yan C, Wang N, Guo Z. Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem C. 2018;6(19):5239. https://doi.org/10.1039/C7TC05911F.

    Article  CAS  Google Scholar 

  41. Xie P, Zhang Z, Wang Z, Sun K, Fan R. Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research. 2019. https://doi.org/10.34133/2019/1021368.

    Article  Google Scholar 

  42. Qu Y, Wu Y, Wu J, Sun K, Fan R. Simultaneous epsilon-negative and mu-negative property of Ni/CaCu3Ti4O12 metacomposites at radio-frequency region. J Alloy Compd. 2020;847:156526. https://doi.org/10.1016/j.jallcom.2020.156526.

    Article  CAS  Google Scholar 

  43. Qu Y, Wu J, Wang Z, Liu Y, Xie P, Wang Z, Tian J, Fan R. Radio-frequency epsilon-negative property and diamagnetic response of percolative Ag/CCTO metacomposites. Scripta Mater. 2021;203:114067. https://doi.org/10.1016/j.scriptamat.2021.114067.

    Article  CAS  Google Scholar 

  44. Cheng C, Wu Y, Qu Y, Ma R, Fan R. Radio-frequency negative permittivity of carbon nanotube/copper calcium titanate ceramic nanocomposites fabricated by spark plasma sintering. Ceram Int. 2020;46(2):2261. https://doi.org/10.1016/j.ceramint.2019.09.213.

    Article  CAS  Google Scholar 

  45. Qu Y, Du Y, Fan G, Xin J, Liu Y, Xie P, You S, Zhang Z, Sun K, Fan R. Low-temperature sintering Graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J Alloy Compd. 2019;771:699. https://doi.org/10.1016/j.jallcom.2018.09.049.

    Article  CAS  Google Scholar 

  46. Wang Z, Sun K, Xie P, Hou Q, Liu Y, Gu Q, Fan R. Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater. 2020;185:412. https://doi.org/10.1016/j.actamat.2019.12.034.

    Article  CAS  Google Scholar 

  47. Wang Z, Xie P, Fan G, Zhang Z, Liu Y, Gu Q, Fan R. Epsilon-negative behavior of BaTiO3/Ag metacomposites prepared by an in situ synthesis. Ceram Int. 2020;46(7):9342. https://doi.org/10.1016/j.ceramint.2019.12.191.

    Article  CAS  Google Scholar 

  48. Fan G, Wang Z, Wei Z, Liu Y, Fan R. Negative dielectric permittivity and high-frequency diamagnetic responses of percolated nickel/rutile cermets. Compos Part a-Appl S. 2020;139:106132. https://doi.org/10.1016/j.compositesa.2020.106132.

    Article  CAS  Google Scholar 

  49. Wei Z, Wang Z, Fan G, Xu C, Shi G, Zhang G, Liu Y, Fan R. Low-frequency plasmonic state and negative permittivity in copper/titanium dioxide percolating composites. Ceram Int. 2021;47(2):2208. https://doi.org/10.1016/j.ceramint.2020.09.060.

    Article  CAS  Google Scholar 

  50. Liu L, Li Y, Yu X, Du J, Zhang J, Li J, Gan G. Three-dimensional network of hexagonal boron nitride filled with polydimethylsiloxane with high thermal conductivity and good insulating properties for thermal management applications. Polymer. 2022;262:125440. https://doi.org/10.1016/j.polymer.2022.125440.

    Article  CAS  Google Scholar 

  51. Hu X, Zhu C, Wu H, Li X, Lu X, Qu J. Large-scale preparation of flexible phase change composites with synergistically enhanced thermally conductive network for efficient low-grade thermal energy recovery and utilization. Compos Part a-Appl S. 2022;154:106770. https://doi.org/10.1016/j.compositesa.2021.106770.

    Article  CAS  Google Scholar 

  52. Wu T, Li X, Xu W, Du Y, Xie H, Qu J. Scalable fabrication of high-enthalpy polyethylene/carbon nanotubes/paraffin wax nanocomposite with flexibility and superhydrophobicity for efficient thermal management. Compos Part a-Appl S. 2022;159:107006. https://doi.org/10.1016/j.compositesa.2022.107006.

    Article  CAS  Google Scholar 

  53. Wei Z, Wang Z, Xu C, Fan G, Song X, Liu Y, Fan R. Defect-induced insulator-metal transition and negative permittivity in La1-xBaxCoO3 perovskite structure. J Mater Sci Technol. 2022;112:77. https://doi.org/10.1016/j.jmst.2021.11.002.

    Article  CAS  Google Scholar 

  54. Smith D, Padilla W, Vier D, Nemat-Nasser S, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184. https://doi.org/10.1103/PhysRevLett.84.4184.

    Article  CAS  Google Scholar 

  55. Yan K, Shen L, Yin F, Qi G, Zhang X, Fan R, Bao N. Metallic ferromagnet of La0.5Sr0.5MnO3 with negative permittivity and permeability. Adv Electron Mater. 2022;8(2):2101020. https://doi.org/10.1002/aelm.202101020.

    Article  CAS  Google Scholar 

  56. Song J, Shi G, Song X, Zhang Z, Liu Y, Fan R. Tunable negative permittivity behavior in percolated MWCNTs/PVDF composites. Mater Lett. 2022;318:132051. https://doi.org/10.1016/j.matlet.2022.132051.

    Article  CAS  Google Scholar 

  57. Song X, Shi G, Fan G, Liu Y, Fan R. Low-frequency plasmonic state and tunable negative permittivity in percolative graphite/barium titanate composites. Ceram Int. 2022;48(1):832. https://doi.org/10.1016/j.ceramint.2021.09.164.

    Article  CAS  Google Scholar 

  58. Hou Q, Ju L, Qin F, Peng H, Fan R. Tuning negative permittivity by anodization of A 3D copper network. Ecs J Solid State Sc. 2022;11(4):043014. https://doi.org/10.1149/2162-8777/ac6697.

    Article  Google Scholar 

  59. Liu M, Ren Y, Yu Q, Mi J, Hao L. research progress of middle and high temperature proton conductor electrolyte ceramics. Chin J Rare Met. 2022;46(9):1244. https://doi.org/10.13373/j.cnki.cjrm.XY20050015.

    Article  Google Scholar 

  60. Wang P, Zhang J, Zhang Y, Qin F, Yang M, Chen H. Structure and properties of silicon oxycarbide porous ceramics with different catalysts. Chin J Rare Met. 2022;46(12):1573. https://doi.org/10.13373/j.cnki.cjrm.XY21020007.

    Article  Google Scholar 

  61. Zhang L, Huo C, Ma Y, Ma H, Lin Q, Feng D. Surface dislocation corrosion in germanium monocrystal wafer of low dislocation density. Chin J Rare Met. 2022;46(8):1118. https://doi.org/10.13373/j.cnki.cjrm.XY20070007.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52101176, 11604060, 22005071 and 52101010), the China Postdoctoral Science Foundation (No. 2020M671992), Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110883), Guizhou Provincial Science and Technology Projects (No. ZK [2022] General 044) and the Cultivation Programs Research Foundation of Guizhou University (No. 2019-64). The author Yunpeng Qu greatly thanks the support of the Fund of Natural Science Special (Special Post) Research Foundation of Guizhou University [Grant No. 2023-032].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei-Tao Xie, Yu Xie or Xiao-Si Qi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16999 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, YP., Wu, HK., Xie, PT. et al. Carbon nanotube-carbon black/CaCu3Ti4O12 ternary metacomposites with tunable negative permittivity and thermal conductivity fabricated by spark plasma sintering. Rare Met. 42, 4201–4211 (2023). https://doi.org/10.1007/s12598-023-02346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02346-5

Keywords

Navigation