Skip to main content
Log in

Developing a high-performance Al–Mg–Si–Sn–Sc alloy for essential room-temperature storage after quenching: aging regime design and micromechanisms

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sn microalloying can depress the adverse effect of natural aging after quenching (i.e., room-temperature storage) of Al–Mg–Si alloys. However, the other effect of Sc micro-addition to the Al–Mg–Si–Sn alloys remains elusive. Here, the optimal room-temperature storage time, properties and micromechanisms of Al–0.43 Mg–1.2Si–0.1Sn–0.1Sc (wt%) alloy are investigated by atomic-resolution scanning transmission electron microscopy (STEM), microhardness and corrosion resistance tests. The results show that the peak-aging Al–Mg–Si–Sn–Sc alloy exhibits vastly shortened peak hardening time, increased thermal stability and corrosion resistance compared with its Sc-free counterpart after a long room-temperature storage time of 1 week. Under such a designed double-stage aging regime (1-week room-temperature storage + artificial aging at 180 °C), the addition of Sc to Al–Mg–Si–Sn alloy induces a decrease in diameter but an increase in length of peak-hardening β”-based precipitates. In addition, a suppressed over-aging phase transition from Sc/Sn-containing β” to β’ is identified in the Al–Mg–Si–Sn–Sc alloy. The Sn tends to segregate to the Si site in the low-density cylinder of β” and the central site of sub-B' in the precipitate can be occupied by Sn/Sc. Further study reveals that Sc and Sn coexist in the precursors of β”. Both reduced width of precipitation free zones and protective corrosion product film easily formed on the material contribute to the improved corrosion resistance of Al–Mg–Si–Sn–Sc alloy. The results provide important insight into the development of high-performance Al alloys.

Graphical abstract

摘要

Sn 微合金化可以抑制 Al Mg Si 合金淬火后自然时效 即室温储存 的不利影响。然而, Sc 微添加到 Al Mg Si Sn 合金的其他影响仍然是难 以捉摸的。通过原子分辨率扫描透射电镜、显微硬度和耐蚀性测试,研究了 Al 0.43Mg 1.2Si 0.1Sn 0.1Sc (wt%) 合金的最佳室温储存 时间、 性能和微观机理。结果表明 经峰时效处理的 Al Mg Si Sn Sc 合金在长时间室温储存 1 周后,其峰时效时间明显 缩短,热稳定性和耐蚀性 明显提高 在设计的双级 时效 室温储存 1 周 180 人工时效 条件下, Sc 的加入使 Al Mg Si Sn 合金的 β" 基峰硬析出相直径减小,长度 增加。此外, Al Mg Si Sn Sc 合金还发生了从含 Sc/ S n 的 β" 到 β' 的抑制过时效相变。 Sn 倾向于在 β" 低密度柱中偏析到 Si 位,析出相中 sub B 中心位置被 Sn/Sc 占据。进一步的研究表明, Sc 和 Sn 同时存在于 β" 的前 驱 体中。 Al Mg Si Sn Sc 合金的耐蚀性因 前驱晶界无析出带 宽 度减小和易在材料上形成保护腐蚀产物膜而提高。研究结果为高性能铝合金的发展提供了重要的理论依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Matsuda K, Sakaguchi Y, Miyata Y, Uetani Y, Sato T, Kamio A, Ikeno S. Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy. J Mater Sci. 2000;35(1):179. https://doi.org/10.1023/A:1004769305736.

    Article  CAS  Google Scholar 

  2. Marioara CD, Andersen SJ, Jansen J, Zandbergen HW. The influence of temperature and storage time at RT on nucleation of the β” phase in a 6082 Al–Mg–Si alloy. Acta Mater. 2003. https://doi.org/10.1016/S1359-6454(02)00470-6.

    Article  Google Scholar 

  3. Li Y, Wang QP, Gao GJ, Li JD, Wang ZD, Xu GM. Texture evolution and mechanical properties of Al–Mg–Si alloys at different intermediate annealing temperatures. Rare Met. 2019;38(10):937. https://doi.org/10.1007/s12598-019-01315-1.

    Article  CAS  Google Scholar 

  4. Hu J, Teng J, Ji X, Fu D, Zhang W, Zhang H. Enhanced mechanical properties of an Al–Mg–Si alloy by repetitive continuous extrusion forming process and subsequent aging treatment. Mater Sci Eng A. 2017;695:35. https://doi.org/10.1016/j.msea.2017.04.013.

    Article  CAS  Google Scholar 

  5. Chen JH, Costan E, van Huis MA, Xu Q, Zandbergen HW. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science. 2006;312(5772):416. https://doi.org/10.1126/science.1124199.

    Article  CAS  Google Scholar 

  6. Wu S, Luo T, Kou Z, Tang S, Shan G, Yan M, Wang J, Fu S, Liu S, Lan S, Feng T. Unconventional structure evolution stabilizes the ultrahigh specific strength in a nanostructured Al–Mg–Li alloy. Mater Sci Eng A. 2022;860:144282. https://doi.org/10.1016/j.msea.2022.144282.

    Article  CAS  Google Scholar 

  7. Wu S, Luo T, Kou Z, Tang S, Yan M, Wang J, Fu S, Ying H, Liu S, Wilde G, Lai Q, Lan S, Feng T. Origin of strain softening in a nanograined Al alloy. Scr Mater. 2023;226:115235. https://doi.org/10.1016/j.scriptamat.2022.115235.

    Article  CAS  Google Scholar 

  8. Banhart J, Chang CST, Liang Z, Wanderka N, Lay MDH, Hill AJ. Natural aging in Al–Mg–Si alloys-a process of unexpected complexity. Adv Eng Mater. 2010;12(7):559. https://doi.org/10.1002/adem.201000041.

    Article  CAS  Google Scholar 

  9. Birol Y, Karlík M. Bake hardening of twin roll cast Al–Mg–Si sheet. Mater Sci Technol. 2013;21(2):153. https://doi.org/10.1179/174328405x20905.

    Article  Google Scholar 

  10. Ding L, Jia Z, Zhang Z, Sanders RE, Liu Q, Yang G. The natural aging and precipitation hardening behaviour of Al–Mg–Si–Cu alloys with different Mg/Si ratios and Cu additions. Mater Sci Eng A. 2015;627:119. https://doi.org/10.1016/j.msea.2014.12.086.

    Article  CAS  Google Scholar 

  11. Tu W, Tang J, Zhang Y, Cao L, Ma L, Zhu Q, Ye L, Liu S. Influence of Sn on the precipitation and hardening response of natural aged Al-0.4Mg-1.0Si alloy artificial aged at different temperatures. Mater Sci Eng A. 2019;765:138250. https://doi.org/10.1016/j.msea.2019.138250.

    Article  CAS  Google Scholar 

  12. Weng Y, Ding L, Xu Y, Jia Z, Sun Q, Chen F, Sun X, Cong Y, Liu Q. Effect of In addition on the precipitation behavior and mechanical property for Al–Mg–Si alloys. J Alloys Compd. 2022;895:162685. https://doi.org/10.1016/j.jallcom.2021.162685.

    Article  CAS  Google Scholar 

  13. Tu W, Tang J, Ye L, Cao L, Zeng Y, Zhu Q, Zhang Y, Liu S, Ma L, Lu J, Yang B. Effect of the natural aging time on the age-hardening response and precipitation behavior of the Al-0.4Mg-1.0Si-(Sn) alloy. Mater Des. 2021;198:109307. https://doi.org/10.1016/j.matdes.2020.109307.

    Article  CAS  Google Scholar 

  14. Tu W, Tang J, Zhang Y, Ye L, Liu S, Lu J, Zhan X, Li C. Effect of Sn and Cu addition on the precipitation and hardening behavior of Al-1.0Mg-0.6Si alloy. Mater Sci Eng A. 2020;770:138515. https://doi.org/10.1016/j.msea.2019.138515.

    Article  CAS  Google Scholar 

  15. Liu M, Zhang X, Körner B, Elsayed M, Liang Z, Leyvraz D, Banhart J. Effect of Sn and In on the natural ageing kinetics of Al–Mg–Si alloys. Materialia. 2019;6:100261. https://doi.org/10.1016/j.mtla.2019.100261.

    Article  CAS  Google Scholar 

  16. Prach O, Trudonoshyn O, Randelzhofer P, Körner C, Durst K. Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys. Mater Sci Eng A. 2019;759:603. https://doi.org/10.1016/j.msea.2019.05.038.

    Article  CAS  Google Scholar 

  17. Zhang JY, Gao YH, Yang C, Zhang P, Kuang J, Liu G, Sun J. Microalloying Al alloys with Sc: a review. Rare Met. 2020;39(6):636. https://doi.org/10.1007/s12598-020-01433-1.

    Article  CAS  Google Scholar 

  18. He C, Luo B, Zheng Y, Yin Y, Bai Z, Ren Z. Effect of Sn on microstructure and corrosion behaviors of Al–Mg–Si alloys. Mater Charact. 2019;156:109836. https://doi.org/10.1016/j.matchar.2019.109836.

    Article  CAS  Google Scholar 

  19. Weng Y, Xu Y, Ding L, Jia Z, Zhang Z, Chen J, Xie M, Liu Q. Effect of Sn contents on natural aging and precipitation hardening in Al–Mg–Si alloys. Mater Charact. 2021;179:111383. https://doi.org/10.1016/j.matchar.2021.111383.

    Article  CAS  Google Scholar 

  20. Werinos M, Antrekowitsch H, Ebner T, Prillhofer R, Uggowitzer PJ, Pogatscher S. Hardening of Al–Mg–Si alloys: effect of trace elements and prolonged natural aging. Mater Des. 2016;107:257. https://doi.org/10.1016/j.matdes.2016.06.014.

    Article  CAS  Google Scholar 

  21. Werinos M, Antrekowitsch H, Kozeschnik E, Ebner T, Moszner F, Löffler JF, Uggowitzer PJ, Pogatscher S. Ultrafast artificial aging of Al–Mg–Si alloys. Scr Mater. 2016;112:148. https://doi.org/10.1016/j.scriptamat.2015.09.037.

    Article  CAS  Google Scholar 

  22. Zhang X, Liu M, Sun H, Banhart J. Influence of Sn on the age hardening behavior of Al–Mg–Si alloys at different temperatures. Materialia. 2019;8:100441. https://doi.org/10.1016/j.mtla.2019.100441.

    Article  CAS  Google Scholar 

  23. Saga M, Kikuchi M. Effect of Sn Addition on the two-step aging behavior in Al–Mg–Si Alloys for automotive application. In: Proceedings of the 9th International Conference on Aluminium Alloys. Brisbane; 2004. 2.

  24. Werinos M, Antrekowitsch H, Ebner T, Prillhofer R, Curtin WA, Uggowitzer PJ, Pogatscher S. Design strategy for controlled natural aging in Al–Mg–Si alloys. Acta Mater. 2016;118:296. https://doi.org/10.1016/j.actamat.2016.07.048.

    Article  CAS  Google Scholar 

  25. Liu Y, Lai YX, Chen ZQ, Chen SL, Gao P, Chen JH. Formation of β”-related composite precipitates in relation to enhanced thermal stability of Sc-alloyed Al–Mg–Si alloys. J Alloys Compd. 2021. https://doi.org/10.1016/j.jallcom.2021.160942.

    Article  Google Scholar 

  26. Wang SB, Pan CF, Wei B, Zheng X, Lai YX, Chen JH. Nano-phase transformation of composite precipitates in multicomponent Al–Mg–Si(–Sc) alloys. J Mater Sci Technol. 2022;110:216. https://doi.org/10.1016/j.jmst.2021.09.037.

    Article  CAS  Google Scholar 

  27. Jiang S, Wang R. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J Mater Sci Technol. 2019;35(7):1354. https://doi.org/10.1016/j.jmst.2019.03.011.

    Article  CAS  Google Scholar 

  28. Wei B, Pan S, Liao G, Ali A, Wang S. Sc-containing hierarchical phase structures to improve the mechanical and corrosion resistant properties of Al–Mg–Si alloy. Mater Des. 2022;218:110699. https://doi.org/10.1016/j.matdes.2022.110699.

    Article  CAS  Google Scholar 

  29. Sun Y, Luo Y, Pan Q, Liu B, Long L, Wang W, Ye J, Huang Z, Xiang S. Effect of Sc content on microstructure and properties of Al–Zn–Mg–Cu–Zr alloy. Mater Today Commun. 2021;26:101899. https://doi.org/10.1016/j.mtcomm.2020.101899.

    Article  CAS  Google Scholar 

  30. Li K, Béché A, Song M, Sha G, Lu X, Zhang K, Du Y, Ringer SP, Schryvers D. Atomistic structure of Cu-containing β” precipitates in an Al–Mg–Si–Cu alloy. Scr Mater. 2014;75:86. https://doi.org/10.1016/j.scriptamat.2013.11.030.

    Article  CAS  Google Scholar 

  31. Yang W, Wang M, Zhang R, Zhang Q, Sheng X. The diffraction patterns from β” precipitates in 12 orientations in Al–Mg–Si alloy. Scr Mater. 2010;62(9):705. https://doi.org/10.1016/j.scriptamat.2010.01.039.

    Article  CAS  Google Scholar 

  32. Han X, Wang S, Wei B, Pan S, Liao G, Li W, Wei Y. Influence of Sc addition on precipitation behavior and properties of Al–Cu–Mg alloy. Acta Metall Sin (Engl Lett). 2022. https://doi.org/10.1007/s40195-021-01328-9.

    Article  Google Scholar 

  33. Hirosawa S, Sato T, Kamio A, Flower HM. Classification of the role of microalloying elements in phase decomposition of Al based alloys. Acta Mater. 2000;48(8):1797. https://doi.org/10.1016/S1359-6454(99)00475-9.

    Article  CAS  Google Scholar 

  34. Zhang X, Zhou X, Nilsson JO. Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: the influence of quench cooling rate. Corros Sci. 2019;150:100. https://doi.org/10.1016/j.corsci.2019.01.030.

    Article  CAS  Google Scholar 

  35. Zeng FL, Wei ZL, Li JF, Li CX, Tan X, Zhang Z, Zheng ZQ. Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans Nonferrous Met Soc China. 2011;21(12):2559. https://doi.org/10.1016/S1003-6326(11)61092-3.

    Article  CAS  Google Scholar 

  36. Wu X-F, Wang K-Y, Wu F-F, Zhao R-D, Chen M-H, Xiang J, Ma S-N, Zhang Y. Simultaneous grain refinement and eutectic Mg2Si modification in hypoeutectic Al-11Mg2Si alloys by Sc addition. J Alloys Compd. 2019;791:402. https://doi.org/10.1016/j.jallcom.2019.03.326.

    Article  CAS  Google Scholar 

  37. Liu S, Wang X, Zu Q, Han B, Han X, Cui C. Significantly improved particle strengthening of Al–Sc alloy by high Sc composition design and rapid solidification. Mater Sci Eng A. 2021;800:140304. https://doi.org/10.1016/j.msea.2020.140304.

    Article  CAS  Google Scholar 

  38. Liang Z, Pan QL, He YB, Wang CZ, Liang WJ. Effect of minor Sc and Zr addition on microstructures and mechanical properties of Al–Zn–Mg–Cu alloys. Trans Nonferrous Met Soc China. 2007;17(2):340. https://doi.org/10.1016/S1003-6326(07)60095-8.

    Article  Google Scholar 

  39. Huang X, Pan Q, Li B, Liu Z, Huang Z, Yin Z. Microstructure, mechanical properties and stress corrosion cracking of Al–Zn–Mg–Zr alloy sheet with trace amount of Sc. J Alloys Compd. 2015;650:805. https://doi.org/10.1016/j.jallcom.2015.08.011.

    Article  CAS  Google Scholar 

  40. Zandbergen H, Andersen S, Jansen J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science. 1997;277(5330):1221. https://doi.org/10.1126/science.277.5330.1221.

    Article  CAS  Google Scholar 

  41. Ravi C, Wolverton C. First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater. 2004;52(14):4213. https://doi.org/10.1016/j.actamat.2004.05.037.

    Article  CAS  Google Scholar 

  42. Chen H, Lu J, Kong Y, Li K, Yang T, Meingast A, Yang M, Lu Q, Du Y. Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al–Mg–Si alloys. Acta Mater. 2020;185:193. https://doi.org/10.1016/j.actamat.2019.11.059.

    Article  CAS  Google Scholar 

  43. Pennycook S, Jesson D. High-resolution incoherent imaging of crystals. Phys Rev Lett. 1990;64(8):938. https://doi.org/10.1103/PhysRevLett.64.938.

    Article  CAS  Google Scholar 

  44. Liu C, Ma P, Zhan L, Huang M, Li J. Solute Sn-induced formation of composite β’/β” precipitates in Al–Mg–Si alloy. Scr Mater. 2018;155:68. https://doi.org/10.1016/j.scriptamat.2018.06.028.

    Article  CAS  Google Scholar 

  45. Andersen SJ, Marioara CD, Frøseth A, Vissers R, Zandbergen HW. Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β’ and β” phases. Mater Sci Eng A. 2005;390(1–2):127. https://doi.org/10.1016/j.msea.2004.09.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52061003 and U20A20274), the Natural Science Foundation of Guangxi (No. 2018GXNSFAA050012) and Guangxi Science and Technology Project (Nos. AA17204036-1, AA18118030 and AA17204100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Bao Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Chen, XJ., Liao, GZ. et al. Developing a high-performance Al–Mg–Si–Sn–Sc alloy for essential room-temperature storage after quenching: aging regime design and micromechanisms. Rare Met. 42, 3814–3828 (2023). https://doi.org/10.1007/s12598-023-02342-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02342-9

Keywords

Navigation