Skip to main content
Log in

Synergistic regulation of temperature resistance and thermal insulation performance of zirconia-based ceramic fibers

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

ZrO2 fiber is a promising high-temperature resistant and heat-insulating fiber material. However, the decrease in mechanical properties caused by grain growth at high temperatures seriously affects its application. How to achieve the synergy of its temperature resistance and the thermal insulation performance is still the focus of the current industry. In this work, we started with doping inequivalent elements and studied the phase composition, temperature resistance, and thermal insulation properties of Y2O3-ZrO2 ceramic fibers by adjusting the Y/Zr molar ratio. The results showed that Y2O3 could enter the crystal lattice of ZrO2 and form a solid solution. With the increase in Y2O3 content, the structure of fibers changed from a tetragonal phase to a cubic phase, and the configurational entropy of the system increased. The larger configuration entropy in the sample could produce a robust steric hindrance effect, inhibiting grain growth. After heat treatment at 1300 °C, the grain size of Y2Zr2O7 (Y5Z5) fibers was only 61.8% that of Y0.1Zr0.9O1.95 (Y1Z9) fibers. The smaller grain size made the Y5Z5 fibers still have excellent flexibility and deformation recovery performance after heat treatment at 1300 °C and could still return to the original state after 85% compression or folded in half. In addition, due to the larger configurational entropy, the mean free path of phonon scattering was shortened, thereby improving the thermal insulation performance of the fiber. In short, this work achieves the synergistic effect of temperature resistance and thermal insulation properties of zirconia-based fiber materials only through simple inequivalent element doping.

Graphical abstract

摘要

ZrO2纤维是一种颇具应用前景的耐高温隔热用晶体纤维材料,然而其在高温下晶粒长大导致力学性能下降,严重影响其应用。 如何实现其耐温性能与保温隔热性能的协同,仍是当前业界关注的焦点。在这项工作中,我们从掺杂不等价元素入手,通过调控Y/Zr 摩尔比研究了 Y2O3-ZrO2 陶瓷纤维的物相组成、耐温性和隔热性能。 结果表明Y2O3可以进入ZrO2的晶格并形成固溶体。 随着Y2O3含量的增加,纤维由四方相转变为立方相,同时,会引起体系的构型熵增加。样品中较大的构型熵可以产生较强的空间位阻效应,抑制晶粒生长。经过1300 °C热处理后,Y2Zr2O7(Y5Z5)纤维的晶粒尺寸仅为Y0.1Zr0.9O1.95(Y1Z9)纤维的61.8%。较小的晶粒尺寸使得Y5Z5纤维在1300 °C热处理后仍具有优异的柔韧性和变形恢复性能,在发生85%压缩变形或对折后仍能恢复到原始状态。此外,较大的构型熵导致声子散射的平均自由程缩短,从而提高了纤维的隔热性能。总之,该工作仅通过简单的不等价元素掺杂实现了氧化锆基纤维材料耐温和隔热性能的有效协同。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu X, Zhang QQ, Hao ML, Hu Y, Lin ZY, Peng LL, Wang T, Ren XX, Wang C, Zhao ZP, Wan CZ, Fei HL, Wang L, Zhu J, Sun HT, Chen WL, Du T, Deng BW, Cheng GJ, Shakir I, Dames C, Fisher TS, Zhang X, Li H, Huang Y, Duan XF. Double-negative-index ceramic aerogels for thermal superinsulation. Science. 2019;363(6428):723. https://doi.org/10.1126/science.aav7304.

    Article  CAS  Google Scholar 

  2. Zhang JX, Zhang J, Ye XL, Ma XM, Liu R, Sun QL, Zhou YL. Ultralight and compressive SiC nanowires aerogel for high-temperature thermal insulation. Rare Met. 2023;42(10):3354. https://doi.org/10.1007/s12598-023-02370-5.

    Article  CAS  Google Scholar 

  3. Guo JR, Fu SB, Deng YP, Xu X, Laima SJ, Liu DZ, Zhang PY, Zhou J, Zhao H, Yu HX, Dang SX, Zhang JN, Zhao YD, Li H, Duan XF. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature. 2022;606(7916):909. https://doi.org/10.1038/s41586-022-04784-0.

    Article  CAS  Google Scholar 

  4. Liu XF, He JF, Li YG, Li H, Lei W, Jia QL, Zhang SW, Zhang HJ. Foam-gelcasting preparation of porous SiC ceramic for high-temperature thermal insulation and infrared stealth. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02348-3.

    Article  Google Scholar 

  5. Su L, Wang HJ, Niu M, Dai S, Cai ZX, Yang BG, Huyan HX, Pan XQ. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci Adv. 2020;6(26):eaay6689. https://doi.org/10.1126/sciadv.aay6689.

    Article  CAS  Google Scholar 

  6. Foratirad H, Maragheh MG, Baharvandi HR. Fabrication of porous titanium carbide ceramics by gelcasting process. Rare Met. 2022;41(9):3220. https://doi.org/10.1007/s12598-018-1068-0.

    Article  CAS  Google Scholar 

  7. Xie YS, Wang L, Peng Y, Ma DH, Zhu LY, Zhang GH, Wang XQ. High temperature and high strength Y2Zr2O7 flexible fibrous membrane for efficient heat insulation and acoustic absorption. Chem Eng J. 2021;416:128994. https://doi.org/10.1016/j.cej.2021.128994.

    Article  CAS  Google Scholar 

  8. Yu LF, Xu JY, Shen C, Zhou E, Wu J, Zhang HB, Zheng X, Wang HM, Qin GZ. Realizing ultra-low thermal conductivity by strong synergy of asymmetric geometry and electronic structure in boron nitride and arsenide. Rare Met. 2023;42(1):210. https://doi.org/10.1007/s12598-022-02187-8.

    Article  CAS  Google Scholar 

  9. Liu W, Xie YS, Deng ZZ, Peng Y, Dong JH, Zhu Z, Ma DH, Zhu LY, Zhang GH, Wang XQ. Modification of YSZ fiber composites by Al2TiO5 fibers for high thermal shock resistance. J Adv Ceram. 2022;11:922. https://doi.org/10.1007/s40145-022-0586-2.

    Article  CAS  Google Scholar 

  10. Dong JH, Xie YS, Liu LX, Deng ZZ, Liu W, Zhu LY, Wang XQ, Xu D, Zhang GH. Lightweight and resilient ZrO2–TiO2 fiber sponges with layered structure for thermal insulation. Adv Eng Mater. 2022;24(8):2101603. https://doi.org/10.1002/adem.202101603.

    Article  CAS  Google Scholar 

  11. Mao X, Hong J, Wu YX, Zhang Q, Liu J, Zhao L, Li HH, Wang YY, Zhang K. An efficient strategy for reinforcing flexible ceramic membranes. Nano Lett. 2021;21(22):9419. https://doi.org/10.1021/acs.nanolett.1c02657.

    Article  CAS  Google Scholar 

  12. Yogo T. Synthesis of polycrystalline zirconia fibre with organozirconium precursor. J Mater Sci. 1990;25(5):2394. https://doi.org/10.1007/BF00638033.

    Article  CAS  Google Scholar 

  13. Takahiro G, Hiroshi Y, Takaaki H, Kyoko BK, Yoshimoto A. Preparation of polyzirconoxane from zirconium oxychloride octahydrate and ethylene glycol as a precursor for zirconia ceramics. Appl Organomet Chem. 2000;14(2):119. https://doi.org/10.1002/(SICI)1099-0739(200002)14:2%3c119::AID-AOC964%3e3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  14. Wang L, Liu BX, Xie YS, Ma DH, Zhu YL, Wang XQ. Effect of high-pressure vapor pretreatment on the microstructure evolution and tensile strength of zirconia fibers. J Amer Ceram Soc. 2019;102(8):4450. https://doi.org/10.1111/jace.16312.

    Article  CAS  Google Scholar 

  15. Clauss B, Grüb A, Oppermann W. Continuous yttria-stabilized zirconia fibers. Adv Mater. 1996;8(2):142. https://doi.org/10.1002/adma.19960080208.

    Article  CAS  Google Scholar 

  16. Peng Y, Tan ZQ, Xie YS, Ma DH, Deng ZZ, Cheng X, Wang XQ, Zhang GH, Zhu LY. Strong flexible ceramic nanofiber membranes for ultrafast separation of oil pollutants. ACS Appl Nano Mater. 2022;5(7):9389. https://doi.org/10.1021/acsanm.2c01681.

    Article  CAS  Google Scholar 

  17. Gan XZ, Yu ZC, Yuan KK, Xu CH, Zhang GH, Wang XQ, Zhu LY, Xu D. Effects of cerium addition on the microstructure, mechanical properties and thermal conductivity of YSZ fibers. Ceram Int. 2018;44(6):7077. https://doi.org/10.1016/j.ceramint.2018.01.145.

    Article  CAS  Google Scholar 

  18. Xie YS, Peng Y, Wang L, Ma DH, Wang N, Zhu L, Zhang J, Jia ZT, Wang XQ, Zhang GH. Effects of the atmosphere on the high tensile strength and robust flexibility of Lu2O3 fibrous membrane. Ceram Int. 2021;47(6):8382. https://doi.org/10.1016/j.ceramint.2020.11.202.

    Article  CAS  Google Scholar 

  19. Jiang J, Ni N, Zhao XF, Guo FW, Fan XH, Xiao P. Flexible and robust YAG-Al2O3 composite nanofibrous membranes enabled by a hybrid nanocrystalline-amorphous structure. J Eur Ceram Soc. 2020;40(6):2463. https://doi.org/10.1016/j.jeurceramsoc.2020.01.056.

    Article  CAS  Google Scholar 

  20. Mao X, Shan HR, Song J, Bai Y, Yu JY, Ding B. Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes. CrystEngComm. 2016;18(7):1139. https://doi.org/10.1039/C5CE02382C.

    Article  CAS  Google Scholar 

  21. Peng Y, Xie YS, Wang L, Liu LX, Zhu SL, Ma DH, Zhu LY, Zhang GH, Wang XQ. High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J Eur Ceram Soc. 2021;41(2):1471. https://doi.org/10.1016/j.jeurceramsoc.2020.09.071.

    Article  CAS  Google Scholar 

  22. Zhang XX, Cheng XT, Si Y, Yu JY, Ding B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano. 2022;16(4):5487. https://doi.org/10.1021/acsnano.1c09668.

    Article  CAS  Google Scholar 

  23. Lee J, Ha JH, Song IH, Anwar MS. Electrospun YSZ/silica nanofibers with controlled fiber diameters for air/water filtration media. J Korean Ceram Soc. 2021;58(4):471. https://doi.org/10.1007/s43207-021-00124-6.

    Article  CAS  Google Scholar 

  24. Zhang XX, Cheng XT, Si Y, Yu JY, Ding B. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem Eng J. 2022;433:133628. https://doi.org/10.1016/j.cej.2021.133628.

    Article  CAS  Google Scholar 

  25. Luo JP, Zhou CY, Cheng YJ, Li QH, Liu LJ, Douglas JF, Sinno T. Configurational entropy significantly influences point defect thermodynamics and diffusion in crystalline silicon. Phys Rev Mater. 2022;6(6):064603. https://doi.org/10.1103/PhysRevMaterials.6.064603.

    Article  CAS  Google Scholar 

  26. Xu HJ, Xing ZB, Wang FQ, Cheng ZM. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem Eng Sci. 2019;195:462. https://doi.org/10.1016/j.ces.2018.09.045.

    Article  CAS  Google Scholar 

  27. Zhang P, Lou ZH, Qin MJ, Xu J, Zhu JT, Shi ZM, Chen Q, Reece MJ, Yan HX, Gao F. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications. J Mater Sci Techn. 2022;97:182. https://doi.org/10.1016/j.jmst.2021.05.016.

    Article  CAS  Google Scholar 

  28. Zhao M, Pan W, Wan CL, Qu ZX, Li Z, Yang J. Defect engineering in development of low thermal conductivity materials: a review. J Eur Ceram Soc. 2017;37(1):1. https://doi.org/10.1016/j.jeurceramsoc.2016.07.036.

    Article  CAS  Google Scholar 

  29. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP. Entropy-stabilized oxides. Nat Commun. 2015;6:8485. https://doi.org/10.1038/ncomms9485.

    Article  CAS  Google Scholar 

  30. Liu J, Shao G, Liu D, Chen K, Wang K, Ma B, Ren K, Wang Y. Design and synthesis of chemically complex ceramics from the perspective of entropy. Mater Today Adv. 2020;8:100114. https://doi.org/10.1016/j.mtadv.2020.100114.

    Article  Google Scholar 

  31. Stefan J. Über die beziehung zwischen der wärmestrahlung und der temperatur, sitzungsberichte der mathematisch-naturwissenschaftlichen classe der kaiserlichen. Akademie der Wissenschaften. 1879;79:391.

    Google Scholar 

  32. Wien WH. On the division of energy in the emission-spectrum of a black body. Philosophical Mag Ser. 1897;43(262):214.

    Article  Google Scholar 

  33. Deng ZQ, Mao J, Liu M, Deng CM, Ma JT. Regional characteristic of 7YSZ coatings prepared by plasma spray-physical vapor deposition technique. Rare Met. 2021;40(11):3308. https://doi.org/10.1007/s12598-018-1041-y.

    Article  CAS  Google Scholar 

  34. Guo L, Xin H, Zhang Z, Zhang XM, Ye FX. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance. J Adv Ceram. 2020;9(2):232. https://doi.org/10.1007/s40145-020-0363-z.

    Article  CAS  Google Scholar 

  35. Zhu RB, Zou JP, Mao J, Deng ZQ, Zhang XF, Deng CM, Liu M. A comparison between novel Gd2Zr2O7 and Gd2Zr2O7/YSZ thermal barrier coatings fabricated by plasma spray-physical vapor deposition. Rare Met. 2021;40(7):2244. https://doi.org/10.1007/s12598-020-01534-x.

    Article  CAS  Google Scholar 

  36. Xie YS, Wang L, Liu BX, Zhu LY, Shi SY, Wang XQ. Flexible, controllable, and high-strength near-infrared reflective Y2O3 nanofiber membrane by electrospinning a polyacetylacetone-yttrium precursor. Mater Design. 2018;160:918. https://doi.org/10.1016/j.matdes.2018.10.017.

    Article  CAS  Google Scholar 

  37. Liu HY, Hou XQ, Wang XQ, Wang YL, Xu D, Wang C, Du W, Lü MK, Yuan DR. Fabrication of high-strength continuous zirconia fibers and their formation mechanism study. J Amer Ceram Soc. 2004;87(12):2237. https://doi.org/10.1111/j.1151-2916.2004.tb07498.x.

    Article  CAS  Google Scholar 

  38. Zhang JG, TanX FXJ, Mao J, Deng CM, Liu M, Zhou KS, Zhang XF. Thermal insulation performance of 7YSZ TBCs adjusted via Al modification. Rare Met. 2023;42(3):994. https://doi.org/10.1007/s12598-022-02221-9.

    Article  CAS  Google Scholar 

  39. Keramidas VG, White WB. Raman scattering study of the crystallization and phase transformations of ZrO2. J Amer Ceram Soc. 1974;57(1):22. https://doi.org/10.1111/j.1151-2916.1974.tb11355.x.

    Article  CAS  Google Scholar 

  40. Calderon-Moreno JM, Yoshimura M. Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia–yttria system. Solid State Ionics. 2002;154:125. https://doi.org/10.1016/S0167-2738(02)00473-3.

    Article  Google Scholar 

  41. Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5(4):295. https://doi.org/10.1038/s41578-019-0170-8.

    Article  CAS  Google Scholar 

  42. Xiang HM, Xing Y, Dai FZ, Wang HJ, Su L, Miao L, Zhang GJ, Wang YG, Qi XW, Yao L, Wang HL, Zhao B, Li JQ, Zhou YC. High-entropy ceramics: present status, challenges, and a look forward. J Adv Ceram. 2021;10:385. https://doi.org/10.1007/s40145-021-0477-y.

    Article  CAS  Google Scholar 

  43. Shi SY, Yuan KK, Xu CH, Jin XT, Xie YS, Wang ZH, Wang XQ, Zhu LY, Zhang GH, Xu D. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber. Ceram Int. 2018;44(12):14013. https://doi.org/10.1016/j.ceramint.2018.04.253.

    Article  CAS  Google Scholar 

  44. Chen JW, Wang XQ, Xie YS, Shi SY, Zhang GH, Zhu LY. Preparation and fine thermal insulation performance of Gd2Zr2O7/ZrO2 composite fibers. Ceram Int. 2020;46(2):1615. https://doi.org/10.1016/j.ceramint.2019.09.133.

    Article  CAS  Google Scholar 

  45. Boltzmann L. Ueber eine von Hrn. Bartoli entdeckte beziehung der wärmestrahlung zum zweiten hauptsatze. Ann Phys. 1884;258(5):31.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52202090, 52032003, and 52102093), Shandong University Young Scholars Program (No. 2016WLJH27), the Fundamental Research Funds for the Central Universities (No. 2082019014), China Postdoctoral Science Foundation (No. 2021M690817) and Heilongjiang Provincial Postdoctoral Science Foundation (Nos. LBH-Z21050 and LBH-Z20144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu-Yi Zhu or Xing-Hong Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YS., Peng, Y., Deng, ZZ. et al. Synergistic regulation of temperature resistance and thermal insulation performance of zirconia-based ceramic fibers. Rare Met. 42, 4189–4200 (2023). https://doi.org/10.1007/s12598-023-02336-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02336-7

Keywords

Navigation