Skip to main content
Log in

Comprehensive recovery of W, V, and Ti from spent selective reduction catalysts

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, spent WO3/V2O5-TiO2 catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements, such as W, V, and Ti. Al and Si impurities were preferentially removed by selective microwave-assisted alkali leaching. W and V were leached by enhanced high-pressure leaching with efficiencies estimated at 95% and 81%. The leaching of W and V followed the nuclear shrinkage model controlled by the combination of product layer diffusion and interfacial chemical reaction. A synergistic extraction was applied to separate W and V using an extractant mixture of di-(2-ethylhexyl)phosphoric acid P204 and the primary amine N1923. The extraction efficiencies of V and W reached 86.5% and 6.3%, respectively, with a separation coefficient (V/W) of 95.30. The product was precipitated after extraction to yield ammonium paratungstate (APT) and NH4VO3. The TiO2 catalyst carrier residue meets commercial specifications for reuse. This comprehensive recovery process with the characteristics of high-pressure leaching and synergistic extraction realizes the resourceful utilization of the spent catalysts.

Graphical Abstract

摘要

本研究通过湿法冶金工艺处理用于选择性催化还原的废WO3/V2O5-TiO2 催化剂,实现有 价金属元素W、V 和Ti 的综合回收。首先采用选择性微波辅助碱浸优先去除Al 和Si 杂质,再通过高压强化浸 出W 和V,浸出率分别为95%和81%。W 和V 的高压浸出符合核收缩模型,受产物层扩散和界面化学反应混合 控制的。利用二(2-乙基己基)磷酸(P204)和伯胺(N1923)对W 和V 的浸出溶液进行协同萃取,V 和W 的萃取 效率分别达到86.5%和6.3%,分离系数(V/W)为95.30。萃取反萃后对溶液分别进行沉淀,得到仲钨酸铵(APT) 和NH4VO3。高压浸出残余的TiO2 载体符合再利用标准。该综合回收工艺以高压浸出和协同萃取为特色,实现了 废催化剂的资源化利用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Argyle MD, Bartholomew CH. Heterogeneous catalysts deactivation and regeneration: a review. Catalysts. 2015;5(1):145. https://doi.org/10.3390/catal5010145.

    Article  CAS  Google Scholar 

  2. Lou WB, Zhang Y, Zheng SL, Li P, Zhang Y, Zhao B, Li ZF, Jin W. Efficient recovery of scrapped V2O5-WO3/TiO2 SCR catalyst by cleaner hydrometallurgical process. Hydrometallurgy. 2019;187:45. https://doi.org/10.1016/j.hydromet.2019.05.003.

    Article  CAS  Google Scholar 

  3. Yin HR, Wang YY. Research progress on regeneration and recovery of waste SCR catalyst for flue gas denitrification in coal-fired power plants. Modern Chem Indust. 2019;39(9):16. https://doi.org/10.16606/j.cnki.issn0253-4320.2019.09.004.

    Article  Google Scholar 

  4. Cai YY, Ma L, Xi XLW, Nie ZR, Yang ZJ. Comprehensive recovery of metals in spent Ni–Mo/γ–Al2O3 hydrofining catalyst. Hydrometallurgy. 2022;208:105800. https://doi.org/10.1016/j.hydromet.2021.105800.

    Article  CAS  Google Scholar 

  5. Arslanoğlu H, Yaraş A. Recovery of molybdenum, cobalt and nickel from spent hydrodesulphurization catalyst through oxidizing roast followed by sodium persulfate leaching. Sustain Mater Technol. 2021;28:e00286. https://doi.org/10.1016/j.susmat.2021.e00286.

    Article  CAS  Google Scholar 

  6. Parhi PK, Misra PK. Environmental friendly approach for selective extraction and recovery of molybdenum (Mo) from a sulphate mediated spent Ni–Mo/Al2O3 catalyst baked leach liquor. J Environ Manage. 2022;306:114474. https://doi.org/10.1016/j.jenvman.2022.114474.

    Article  CAS  Google Scholar 

  7. Liu Q, Wang WQ, Yang Y, Liu XG, Xu SM. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3. Rare Met. 2019;38(1):1. https://doi.org/10.1007/s12598-018-1164-1.

    Article  CAS  Google Scholar 

  8. Wu W, Wang CY, Bao WJ, Li HQ. Selective reduction leaching of vanadium and iron by oxalic acid from spent V2O5-WO3/TiO2 catalyst. Hydrometallurgy. 2018;179:52. https://doi.org/10.1016/j.hydromet.2018.05.021.

    Article  CAS  Google Scholar 

  9. Erust C, Akcil A, Bedelova Z, Anarbekov K, Baikonurova A, Tuncuk A. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests. Waste Manag. 2016;49:455. https://doi.org/10.1016/j.wasman.2015.12.002.

    Article  CAS  Google Scholar 

  10. Choi IH, Moon G, Lee JY, Jyothi RK. Hydrometallurgical processing of spent selective catalytic reduction (SCR) catalyst for recovery of tungsten. Hydrometallurgy. 2018;178:137. https://doi.org/10.1016/j.hydromet.2018.04.011.

    Article  CAS  Google Scholar 

  11. Kim JW, Lee WG, Hwang IS, Lee JY, Han C. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching. J Ind Eng Chem. 2015;28(25):73. https://doi.org/10.1016/j.jiec.2015.02.001.

    Article  CAS  Google Scholar 

  12. Liu JL, Wang CY, Wang XR, Li HQ, Zhao C. Iron removal and titanium dioxide support recovery from spent V2O5–WO3/ TiO2 catalyst. Sep Purif Technol. 2022;301(15):121934. https://doi.org/10.1016/j.seppur.2022.121934.

    Article  CAS  Google Scholar 

  13. Tian L, Xu ZF, Chen LJ, Liu Y, Zhang TA. Effect of microwave heating on the pressure leaching of vanadium from converter slag. Hydrometallurgy. 2019;184:45. https://doi.org/10.1016/j.hydromet.2018.11.004.

    Article  CAS  Google Scholar 

  14. Liu XJ, Chen DS, Chu JL, Wang WJ, Li YL, Qi T. Recovery of titanium and vanadium from titanium-vanadium slag obtained by direct reduction of titanomagnetite concentrates. Rare Met. 2022;41(5):1688. https://doi.org/10.1007/s12598-015-0532-3.

    Article  CAS  Google Scholar 

  15. Mahandra H, Singh R, Gupta B. Recovery of vanadium(V) from synthetic and real leach solutions of spent catalyst by solvent extraction using Cyphos IL 104. Hydrometallurgy. 2020;196:105405. https://doi.org/10.1016/j.hydromet.2020.105405.

    Article  CAS  Google Scholar 

  16. Ning PG, Cao HB, Zhang Y. Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923. Sep Purif Technol. 2009;70(1):27. https://doi.org/10.1016/j.seppur.2009.08.006.

    Article  CAS  Google Scholar 

  17. Nekováĭ P, Schrötterová D. Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT. Chem Eng J. 2000;79(3):229. https://doi.org/10.1016/S1385-8947(00)00207-2.

    Article  Google Scholar 

  18. Truong HT, Nguyen TH, Lee MS. Separation of molybdenum(VI), rhenium(VII), tungsten(VI), and vanadium(V) by solvent extraction. Hydrometallurgy. 2017;171:298. https://doi.org/10.1016/j.jiec.2015.06.015.

    Article  CAS  Google Scholar 

  19. Benayad A, Martinez H, Gies A. XPS investigations achieved on the first cycle of V2O5 thin films used in lithium microbatteries. J Electron Spectrosc Relat Phenom. 2006;150(1):1. https://doi.org/10.1016/j.elspec.2005.09.001.

    Article  CAS  Google Scholar 

  20. Zhang QL, Zhang YQ, Zhang TX, Wang HM, Ma YP, Wang JF, Ning P. Influence of preparation methods on iron-tungsten composite catalyst for NH3-SCR of NO: the active sites and reaction mechanism. Appl Surf Sci. 2020;503(15):144190. https://doi.org/10.1016/j.apsusc.2019.144190.

    Article  CAS  Google Scholar 

  21. Niu Y, Ling KC, Sheng QT. Thermodynamic analysis on the formation of sulfur-containing byproducts in tannin extract desulfurization technology. Energy Sources. 2013;35(9):880. https://doi.org/10.1080/15567036.2010.516320.

    Article  CAS  Google Scholar 

  22. Kim J, Kwon DW, Lee S, Ha HP. Exploration of surface properties of Sb-promoted copper vanadate catalysts for selective catalytic reduction of NOx by NH3. Appl Catal B Environ. 2018;236(15):314. https://doi.org/10.1016/j.apcatb.2018.05.024.

    Article  CAS  Google Scholar 

  23. Biesinger MC, Lau LWM, Gerson AR. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci. 2010;257(3):887. https://doi.org/10.1016/j.apsusc.2010.07.086.

    Article  CAS  Google Scholar 

  24. Xin SS, Liu GC, Ma XH, Gong JX, Ma BR, Yan QH, Chen QH, Ma D, Zhang GS, Gao MC, Xin YJ. High efficiency heterogeneous fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism. Appl Catal B Environ. 2021;280:119386. https://doi.org/10.1016/j.apcatb.2020.119386.

    Article  CAS  Google Scholar 

  25. Xu LW, Wang CZ, Chang HZ, Wu QR, Zhang T, Li JH. Newinsight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3−SCR. Environ Sci Technol. 2018;52(12):7064. https://doi.org/10.1021/acs.est.8b01990.

    Article  CAS  Google Scholar 

  26. Zhang Y, Zhang TA, Dreisinger D, Lv CX, Lv GZ, Zhang WG. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching. J Hazard Mater. 2019;369(5):632. https://doi.org/10.1016/j.jhazmat.2019.02.081.

    Article  CAS  Google Scholar 

  27. Lin SD, Li KQ, Yang Y, Gao L, Omran M, Guo SH, Chen J, Chen G. Microwave-assisted method investigation for the selective and enhanced leaching of manganese from low-grade pyrolusite using pyrite as the reducing agent. Chem Eng Process. 2021;159:108209. https://doi.org/10.1016/j.cep.2020.108209.

    Article  CAS  Google Scholar 

  28. Chen HB, Wang HB, Yang LF. High specific surface area rice hull based porous carbon prepared for EDLCs. Int. J. Electrochem. Sci. 2012;7(6):4889. http://www.electrochemsci.org/papers/vol7/7064889.pdf

  29. Dickinson CF, Heal GR. Solid-liquid diffusion controlled rate equations. Thermochim Acta. 1999;340–341(14):89. https://doi.org/10.1016/S0040-6031(99)00256-7.

    Article  Google Scholar 

  30. Yang SH, Li H, Sun YW. Leaching kinetics of zinc silicate in ammonium chloride solution. Trans Nonferrous Met Soc China. 2016;26(6):1688. https://doi.org/10.1016/S1003-6326(16)64278-4.

    Article  CAS  Google Scholar 

  31. Tanda BC, Eksteen JJ, Oraby EA, O’Connor GM. The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Miner Eng. 2019;135:118. https://doi.org/10.1016/j.mineng.2019.02.035.

    Article  CAS  Google Scholar 

  32. Zhang WG, Zhang TA, Lv GZ, Cao XJ, Zhu HY. Thermodynamic study on the V(V)–P(V)–H2O system in acidic leaching solution of vanadium-bearing converter slag. Sep Purif Technol. 2019;218(1):164. https://doi.org/10.1016/j.seppur.2019.02.025.

    Article  CAS  Google Scholar 

  33. Li ZH, Lu J, Wu SX, Zhang GQ, Guan WJ, Zeng L, Li QG, Cao ZY. Extraction and complete separation of tungsten from ammonium molybdate solution by primary amine N1923. ACS Sustain Chem Eng. 2020;8(18):6914. https://doi.org/10.1021/acssuschemeng.9b06383.

    Article  CAS  Google Scholar 

  34. Tangri SK, Suri AK, Gupta CK. Development of solvent extraction processes for production of high purity oxides of molybdenum, tungsten and vanadium. T Indian I Metals. 1998;51:27.

    CAS  Google Scholar 

  35. Nguyen H, Man S. Separation of vanadium and tungsten from sodium molybdate solution by solvent extraction. Ind Eng Chem Res. 2014;53(20):8608. https://doi.org/10.1021/ie500486y.

    Article  CAS  Google Scholar 

  36. Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds tables of spectral data. Guobing Rong. Beijing: Science Press. 2013. 315. https://doi.org/10.1007/978-3-540-93810-1

  37. Luo L, Miyazaki T, Shibayama A. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap. Miner Eng. 2003;16(7):665. https://doi.org/10.1016/S0892-6875(03)00103-1.

    Article  CAS  Google Scholar 

  38. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. J Appl Phys. 2005;44:8269. https://doi.org/10.1143/JJAP.44.8269.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Beijing Natural Science Foundation (No. 2222049), the National Natural Science Foundation of China (Nos. 52025042 and 51621003) and National Key R&D Program of China (No. 2018YFC1901700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Li Xi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LW., Xi, XL., Chen, JP. et al. Comprehensive recovery of W, V, and Ti from spent selective reduction catalysts. Rare Met. 42, 3518–3531 (2023). https://doi.org/10.1007/s12598-023-02321-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02321-0

Keywords

Navigation