Skip to main content
Log in

High-temperature polymer-based nanocomposites for high energy storage performance with robust cycling stability

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-power capacitors are highly demanded in advanced electronics and power systems, where rising concerns on the operating temperatures have evoked the attention on developing highly reliable high-temperature dielectric polymers. Herein, polyetherimide (PEI) filled with highly insulating Al2O3 (AO) nanoparticles dielectric composite films have been fabricated aiming for high thermal stability and reliability operated under high cycling electric field and elevated temperature. At room temperature, incorporating a small fraction of 0.5 vol% AO nanoparticles gives rise to a highest discharged energy density (Ue) of 5.57 J·cm−3 and efficiency (η) of 90.9% at 650 MV·m−1, and a robust cycling stability up to 107 cycles at 400 MV·m−1. Due to the substantially reduced dielectric loss, 2.0 vol% AO/PEI nanocomposite film exhibits excellent high-temperature capacitive performances, delivering Ue ~ 7.33 J·cm−3 with η ~ 88.8% under 700 MV·m−1, and cycling stability up to 106 cycles under 400 MV·m−1 at 100 °C, and Ue ~ 5.57 J·cm−3 with η ~ 84.7% under 620 MV·m−1 at 150 °C. Molecular dynamic simulations are performed to understand the microscopic mechanism via revealing the polymer relaxation process in the AO/PEI composite at elevated temperatures. Our results are therefore very encouraging for high-temperature high-power capacitor application.

Graphical abstract

摘要

随着先进电子器件和电力系统的深入发展, 对高功率电容器需求不断提升, 随之而来的实际工况下作业温度不断升高, 对开发高可靠高温聚合物电介质产生了更迫切的需求。因此, 本文在耐高温聚醚酰亚胺(PEI)基体中引入高绝缘、有良好导热性的Al2O3 (AO)纳米颗粒, 形成纳米复合材料, 以实现高温和高电场下稳定可靠的储能性能。在室温下, 0.5 vol% AO 纳米颗粒含量的复合膜在650 MV·m–1下最高放电能量密度(Ue)达5.57 J·cm–3, 效率(η)为90.9%, 在400 MV·m–1下经过高达 1×107次充放电循环后, 依然保持稳定的储能性能。2.0 vol% AO/PEI复合膜由于更低的介电损耗, 展现出优异的高温储能性能, 当温度升高到 100 °C, 700 MV·m–1Ue高达 7.33 J·cm–3η为88.8%; 400 MV·m–1电场充放电循环1×106次依然稳定; 150 °C条件下, 可在620 MV·m-1下获得 Ue~ 5.57 J·cm–3、效率η~84.7%储能性能。通过分子动力学模拟, 从微观上揭示了 AO/PEI复合材料中聚合物随温度变化的松弛过程有利于提高温度稳定性。 因此, 以上研究结果极有希望发展出高温应用的高功率电容器。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li H, Zhou Y, Liu Y, Li L, Liu Y, Wang Q. Dielectric polymers for high-temperature capacitive energy storage. Chem Soc Rev. 2021;50(11):6369. https://doi.org/10.1039/d0cs00765j.

    Article  CAS  Google Scholar 

  2. Li Q, Yao FZ, Liu Y, Zhang GG, Wang H, Wang Q. High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res. 2018;48(1):219. https://doi.org/10.1146/annurev-matsci-070317-124435.

    Article  CAS  Google Scholar 

  3. Tang YD, Xu WH, Niu S, Zhang ZC, Zhang YH, Jiang ZH. Crosslinked dielectric materials for high-temperature capacitive energy storage. J Mater Chem A. 2021;9(16):10000. https://doi.org/10.1039/d1ta00288k.

    Article  CAS  Google Scholar 

  4. Zhang MH, Qi JL, Liu YQ, Lan S, Luo ZX, Pan H, Lin YH. High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization. Rare Met. 2022;41(3):730. https://doi.org/10.1007/s12598-021-01869-z.

    Article  CAS  Google Scholar 

  5. Zhan FY, Wang HY, He QQ, Xu WL, Chen J, Ren XH, Wang HY, Liu SD, Han MS, Yamauchi Y, Chen LY. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem Sci. 2022;13(41):11981. https://doi.org/10.1039/d2sc04012c.

    Article  CAS  Google Scholar 

  6. Liu SL, Kang L, Jun SC. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv Mater. 2021;33(47):2004689. https://doi.org/10.1002/adma.202004689.

    Article  CAS  Google Scholar 

  7. Kang L, Zhang MY, Zhang J, Liu SD, Zhang N, Yao WJ, Ye Y, Luo C, Gong ZW, Wang CL, Zhou XF, Wu X, Jun SC. Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J Mater Chem A. 2020;8(45):24053. https://doi.org/10.1039/d0ta08979f.

    Article  CAS  Google Scholar 

  8. Bao ZW, Du XZ, Ding S, Chen JH, Dai ZZ, Liu CC, Wang YC, Yin YW, Li XG. Improved working temperature and capacitive energy density of biaxially oriented polypropylene films with alumina coating layers. ACS Appl Energy Mater. 2022;5(3):3119. https://doi.org/10.1021/acsaem.1c03735.

    Article  CAS  Google Scholar 

  9. Miao WJ, Chen HX, Pan ZB, Pei XL, Li L, Li P, Liu JJ, Zhai JW, Pan H. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. Compos Sci Technol. 2021;201:108501. https://doi.org/10.1016/j.compscitech.2020.108501.

    Article  CAS  Google Scholar 

  10. Zhang Y, Liu Z, Zhu LX, Liu J, Zhang YH, Jiang ZH (2020) Enhanced discharged efficiency and high energy density at elevated temperature in polymer dielectric via manipulating relaxation behavior. CCS Chem;2(5):1169. https://doi.org/10.31635/ccschem.020.201900111.

  11. Sun BZ, Hu PH, Ji XM, Fan MZ, Zhou L, Guo MF, He S, Shen Y. Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small. 2022;18(28):2202421. https://doi.org/10.1002/smll.202202421.

    Article  CAS  Google Scholar 

  12. Qiao R, Wang C, Chen S, He GH, Liu ZJ, Luo H, Zhang D. High-temperature dielectric polymers with high breakdown strength and energy density via constructing the electron traps in blends. Compos Part A-Appl S. 2022;152:106679. https://doi.org/10.1016/j.compositesa.2021.106679.

    Article  CAS  Google Scholar 

  13. Zhang TD, Yang LY, Ruan JY, Zhang CH, Chi QG. Improved high-temperature energy storage performance of PEI dielectric films by introducing an SiO2 insulating layer. Macromol Mater Eng. 2021;306(12):2100514. https://doi.org/10.1002/mame.202100514.

    Article  CAS  Google Scholar 

  14. Li H, Ren LL, Ai D, Xie ZL, Zhu SJ, Liu P, Peng ZR, Wang Q. Enhanced energy storage properties of polyetherimide film capacitors filled with boron nitride nanosheets. In: 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Washington; 2019.54.

  15. Chen HX, Pan ZB, Wang WL, Chen YY, Xing S, Cheng Y, Ding XP, Liu JJ, Zhai JW, Yu JH. Ultrahigh discharge efficiency and improved energy density in polymer-based nanocomposite for high-temperature capacitors application. Compos Part A-Appl S. 2021;142:106266. https://doi.org/10.1016/j.compositesa.2020.106266.

    Article  CAS  Google Scholar 

  16. Ren LL, Yang LJ, Zhang SY, Li H, Zhou Y, Ai D, Xie ZL, Zhao XT, Peng ZR, Liao RJ, Wang Q. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors. Compos Sci Technol. 2021;201:108528. https://doi.org/10.1016/j.compscitech.2020.108528.

    Article  CAS  Google Scholar 

  17. Jiang JH, Li JP, Zhang YT, Yuan Y, Liu XY, Zuo PY, Qian J, Zhuang QX. Tuning the interfacial insulating shell characteristics in CaCu3Ti4O12 nanowires/polyetherimide nanocomposites for high-temperature capacitive energy storage. J Mater Chem C. 2022;10(20):7962. https://doi.org/10.1039/d2tc00968d.

    Article  CAS  Google Scholar 

  18. Feng Y, Xue JP, Zhang TD, Chi QG, Li JL, Chen QG, Wang JJ, Chen LQ. Double-gradients design of polymer nanocomposites with high energy density. Energy Storage Mater. 2022;44:73. https://doi.org/10.1016/j.ensm.2021.10.008.

    Article  Google Scholar 

  19. Li H, Ren LL, Ai D, Han ZB, Liu Y, Yao B, Wang Q. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. InfoMat. 2019;2(2):389. https://doi.org/10.1002/inf2.12043.

    Article  CAS  Google Scholar 

  20. Wu XD, Liu YC, Lin XT, Huang EL, Song GH, Tan DQ. Atomic layer deposition coated polymer films with enhanced high-temperature dielectric strength suitable for film capacitors. Surf Interfaces. 2022;28:101686. https://doi.org/10.1016/j.surfin.2021.101686.

    Article  CAS  Google Scholar 

  21. Zhu LX, Zhang Y, Xu WH, Zhu XB, Niu S, Zhang YH, Jiang ZH. Crosslinked polyetherimide nanocomposites with superior energy storage achieved via trace Al2O3 nanoparticles. Compos Sci Technol. 2022;223:109421. https://doi.org/10.1016/j.compscitech.2022.109421.

    Article  CAS  Google Scholar 

  22. Yuan C, Zhou Y, Zhu YJ, Liang JJ, Wang SJ, Peng SM, Li YS, Cheng S, Yang MC, Hu J, Zhang B, Zeng R, He JL, Li Q. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat Commun. 2020;11(1):3919. https://doi.org/10.1038/s41467-020-17760-x.

    Article  CAS  Google Scholar 

  23. Li H, Ai D, Ren LL, Yao B, Han ZB, Shen ZH, Wang JJ, Chen LQ, Wang Q. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv Mater. 2019;31(23):1900875. https://doi.org/10.1002/adma.201900875.

    Article  CAS  Google Scholar 

  24. Ren LL, Li H, Xie ZL, Ai D, Zhou Y, Liu Y, Zhang SY, Yang LJ, Zhao XT, Peng ZR, Liao RJ, Wang Q. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers. Adv Energy Mater. 2021;11(28):2101297. https://doi.org/10.1002/aenm.202101297.

    Article  CAS  Google Scholar 

  25. Lin Q, Hou YF, Zheng YQ, Tan YN, Du P, Luo LH, Li WP. Poly(ether imide)-based nanocomposites with low fraction of hierarchical Ag@AO nanofiber for high-temperature energy storage. ACS Appl Energy Mater. 2022;5(2):2329. https://doi.org/10.1021/acsaem.1c03818.

    Article  CAS  Google Scholar 

  26. Petersen, Kurt E. Silicon as a mechanical material. Proc IEEE. 1982;70(5):420. https://doi.org/10.1109/PROC.1982.12331.

  27. Fan MZ, Hu PH, Dan ZK, Jiang JY, Sun BZ, Shen Y. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles. J Mater Chem A. 2020;8(46):24536. https://doi.org/10.1039/d0ta08908g.

    Article  CAS  Google Scholar 

  28. Wu XD, Song GH, Zhang XF, Lin X, Ivry YC, Tan DQ. Multilayer polyetherimide films incorporating alumina nanolayers for dielectric capacitors. Chem Eng J. 2022;450:137940. https://doi.org/10.1016/j.cej.2022.137940.

    Article  CAS  Google Scholar 

  29. Li L, Cheng JS, Cheng YY, Han T, Liu Y, Zhou Y, Zhao GH, Zhao Y, Xiong CX, Dong LJ, Wang Q. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv Mater. 2021;33(35):2102392. https://doi.org/10.1002/adma.202102392.

    Article  CAS  Google Scholar 

  30. Sun L, Shi ZC, He BL, Wang HL, Liu S, Huang MH, Shi J, Dastan D, Wang H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Adv Funct Mater. 2021;31(35):2100280. https://doi.org/10.1002/adfm.202100280.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 92066203 and 51872009) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 537 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YF., Zheng, YT., Zhang, FY. et al. High-temperature polymer-based nanocomposites for high energy storage performance with robust cycling stability. Rare Met. 42, 3682–3691 (2023). https://doi.org/10.1007/s12598-023-02312-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02312-1

Keywords

Navigation