Skip to main content
Log in

Graphene quantum dots modulated solution-derived InGaO thin-film transistors and stress stability exploration

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) doped InGaO (IGO) thin film transistors (TFTs) have been fabricated based on solution-driven ZrOx as gate dielectrics. Compare to pure IGO TFTs, superior electrical performance of the GQDs-IGO TFTs can be achieved by adjusting the doping concentration. It has been demonstrated that GQDs-modified IGO TFTs devices with GQDs doping content of 0.3 mg·ml−1 have the optimized performances, including field-effect mobility (μFE) of 22.02 cm2·V–1·s−1, on/off current ratio (Ion/Ioff) of 7.06 × 107, subthreshold swing (SS) of 0.09 V⋅dec−1, hysteresis of 0.04 V and interfacial trap states (Dit) of 1.03 × 1012 cm−2. In addition, bias stress and illumination stress tests have been performed and excellent stability has been achieved for optimized GQDs-IGO-TFTs. The GQDs-IGO TFTs device showed smaller threshold voltage shift of 0.12 and 0.04 V under positive bias stress (PBS) test and negative bias stress (NBS) test for 3600 s, respectively. And it showed smaller threshold voltage shift of 0.27 and 0.34 V for red light under the PBS and NBS test for 3600 s, respectively. Meanwhile, it showed smaller threshold voltage shift of 0.20 and 0.22 V for green light under PBS and NBS test for 3600 s, respectively. It also showed smaller threshold voltage shift of 0.17 and 0.12 V for blue under the positive bias illumination stress (PBIS) test and negative bias illumination stress (NBIS) test for 3600 s, respectively. Low-frequency noise (LFN) characteristics of GQDs-IGO/ZrOx TFTs indicated that the noise source came from the fluctuations in mobility. Finally, a low voltage resistor-loaded unipolar inverter has been built based on GQDs-IGO/ZrOx TFT, demonstrating good dynamic response behavior and a maximum gain of 7.4. These experimental results have suggested that solution-processed GQDs-IGO/ZrOx TFT may envision potential applications in low-cost and large-area electronics.

Graphical Abstract

摘要

本文以溶液驱动ZrOx为栅介质,制备了石墨烯量子点掺杂InGaO (IGO)薄膜晶体管。与未掺杂IGO TFT相比,GQDs-IGO TFT的电学性能优于未掺杂IGO TFT。 在GQDs掺杂量为0.3 mg ml–1的条件下,GQDs修饰的IGO TFTs器件的场效应迁移率(μFE)为22.02 cm2 V–1 s–1, Ion/Ioff为7.06×107,亚阈值摆幅(SS)为0.09 V Dec–1,阈值电压为0.04 V,界面陷阱态(Dit)为1.03×1012 cm–2。此外,对优化后的GQDs-IGO-TFT进行了偏压稳定性和光照稳定性测试,结果表明,优化后的GQDs-IGO-TFT具有良好的稳定性。GQDs-IGO TFTs器件在3600 s的正偏压测试和负偏压测试中,阈值电压位移分别为0.12和0.04 V。在3600 s的正偏压光照应力(PBIS)和负偏压光照应力(NBIS)试验中,红光的阈值电压位移分别为0.27和0.34 V。同时,在3600 s的PBIS测试和NBIS测试下,绿光的阈值电压位移分别为0.20和0.22 V。在3600 s的PBIS测试和NBIS测试下,蓝光的阈值电压位移分别为0.17和0.12 V。 GQDs-IGO/ZrOx TFTs的低频噪声(LFN)特性表明,噪声源来自迁移率的涨落。最后,基于GQDs-IGO/ZrOx TFT构建了一个低电压电阻负载的单极性逆变器,具有良好的动态响应特性,最大增益为7.4。我们的实验结果表明,溶液处理GQDs-IGO/ZrOx薄膜晶体管在低成本和大面积电子学领域具有潜在的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang CP, Chang SJ, Chang TH, Wei CY, Juan YM, Chiu CJ, Weng WY. Thin-film transistors with amorphous indium-gallium-oxide bilayer channel. IEEE Electron Device Lett. 2017;38(5):572. https://doi.org/10.1109/led.2017.2685619.

    Article  CAS  Google Scholar 

  2. Priyadarshi S, Billah MM, Kim H, Rabbi MH, Urmi SS, Lee S, Jang J. High-performance dual gate amorphous InGaZnO thin film transistor with top gate to drain offset. IEEE Electron Device Lett. 2022;43(1):56. https://doi.org/10.1109/led.2021.3128940.

    Article  CAS  Google Scholar 

  3. Pappenfus TM, Chesterfield RJ, Frisbie CD, Mann KR, Casado J, Raff JD, Miller LL. A pi-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor. J Am Chem Soc. 2002;124(16):4184. https://doi.org/10.1021/ja025553j.

    Article  CAS  Google Scholar 

  4. Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater. 2016;28(24):4861. https://doi.org/10.1002/adma.201600225.

    Article  CAS  Google Scholar 

  5. Sheng T, Liu XZ, Qian LX, Xu B, Zhang YY. Photoelectric properties of beta-Ga2O3 thin films annealed at different conditions. Rare Met. 2022;41(4):1375. https://doi.org/10.1007/s12598-015-0575-5.

    Article  CAS  Google Scholar 

  6. Han SY, Herman GS, Chang CH. Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. J Am Chem Soc. 2011;133(14):5166. https://doi.org/10.1021/ja104864j.

    Article  CAS  Google Scholar 

  7. Jiang GX, Liu A, Liu GX, Zhu CD, Meng Y, Shin B, Fortunato E, Martins R, Shan FK. Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Appl Phys Lett. 2016;109(18):183508. https://doi.org/10.1063/1.4966897.

    Article  CAS  Google Scholar 

  8. Yang B, He G, Gao Q, Wang W, Zhang Y, Xia Y, Xu X, Wang L, Zhang M. Illumination interface stability of aging-diffusion-modulated high performance InZnO/DyO transistors and exploration in digital circuits. J Mater Sci Technol. 2021;87:143. https://doi.org/10.1016/j.jmst.2021.01.066.

    Article  CAS  Google Scholar 

  9. Bak JY, Yang S, Ryu HJ, Park SHK, Hwang CS, Yoon SM. Negative-bias light stress instability mechanisms of the oxide-semiconductor thin-film transistors using In-Ga-O channel layers deposited with different oxygen partial pressures. IEEE Trans Electron Dev. 2014;61(1):79. https://doi.org/10.1109/ted.2013.2288264.

    Article  CAS  Google Scholar 

  10. Li Y, Zhu D, Xu W, Han S, Fang M, Liu W, Cao P, Lu Y. High-mobility nanometer-thick crystalline In-Sm-O thin-film transistors via aqueous solution processing. J Mater Chem C. 2020;8(1):310. https://doi.org/10.1039/c9tc05162g.

    Article  CAS  Google Scholar 

  11. Ma RX, Xiao YQ, Li SN, Wang YY, Li DR, He LW. Preparation and optoelectronic properties of a-IGZO thin films deposited by RF magnetron sputtering at different working pressures. Rare Met. 2018;37(7):599. https://doi.org/10.1007/s12598-014-0314-3.

    Article  CAS  Google Scholar 

  12. Lorenz M, Rao MSR, Venkatesan T, Fortunato E, Barquinha P, Branquinho R, Salgueiro D, Martins R, Carlos E, Liu A, Shan FK, Grundmann M, Boschker H, Mukherjee J, Priyadarshini M, DasGupta N, Rogers DJ, Teherani FH, Sandana EV, Bove P, Rietwyk K, Zaban A, Veziridis A, Weidenkaff A, Muralidhar M, Murakami M, Abel S, Fompeyrine J, Zuniga-Perez J, Ramesh R, Spaldin NA, Ostanin S, Borisov V, Mertig I, Lazenka V, Srinivasan G, Prellier W, Uchida M, Kawasaki M, Pentcheva R, Gegenwart P, Granozio FM, Fontcuberta J, Pryds N. The 2016 oxide electronic materials and oxide interfaces roadmap. J Phys D Appl Phys. 2016;49(43):433001. https://doi.org/10.1088/0022-3727/49/43/433001.

    Article  CAS  Google Scholar 

  13. Goncalves G, Barquinha P, Pereira L, Franco N, Alves E, Martins R, Fortunato E. High mobility a-IGO films produced at room temperature and their application in TFTs. Electrochem Solid ST. 2010;13(1):20. https://doi.org/10.1149/1.3257613.

    Article  CAS  Google Scholar 

  14. Kamiya T, Hosono H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010;2(1):15. https://doi.org/10.1038/asiamat.2010.5.

    Article  Google Scholar 

  15. Olziersky A, Barquinha P, Vila A, Magana C, Fortunato E, Morante JR, Martins R. Role of Ga2O3-In2O3-ZnO channel composition on the electrical performance of thin-film transistors. Mater Chem Phys. 2011;131(1):512. https://doi.org/10.1016/j.matchemphys.2011.10.013.

    Article  CAS  Google Scholar 

  16. Park JS, Kim TS, Son KS, Lee KH, Maeng WJ, Kim HS, Kim ES, Park KB, Seon JB, Choi W. The influence of SiOx and SiNx passivation on the negative bias stability of Hf-In-Zn-O thin film transistors under illumination. Appl Phys Lett. 2010;96(26):262109. https://doi.org/10.1063/1.3435482.

    Article  CAS  Google Scholar 

  17. Cheng YC, Chang SP, Chang SJ. Investigation of nitrogen doping effects on light-induced oxygen vacancy ionization and oxygen desorption in c-IGO TFTs. Mater Res Express. 2019;6(10):106445. https://doi.org/10.1088/2053-1591/ab24a6.

    Article  CAS  Google Scholar 

  18. Kao CH, Liu CS, Xu CY, Lin CF, Chen H. Ti-doped indium gallium oxide electrolyte-insulator-semiconductor membranes for multiple ions and solutes detectors. J Mater Sci Mater Electron. 2019;30(23):20596. https://doi.org/10.1007/s10854-019-02425-3.

    Article  CAS  Google Scholar 

  19. Kim S, Hwang SW, Kim MK, Shin DY, Shin DH, Kim CO, Yang SB, Park JH, Hwang E, Choi SH, Ko G, Sim S, Sone C, Choi HJ, Bae S, Hong BH. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 2012;6(9):8203. https://doi.org/10.1021/nn302878r.

    Article  CAS  Google Scholar 

  20. Anikeeva PO, Halpert JE, Bawendi MG, Bulovic V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Lett. 2007;7(8):2196. https://doi.org/10.1080/15980316.2016.1200501.

    Article  CAS  Google Scholar 

  21. Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A. Graphene at the edge: stability and dynamics. Science. 2009;323(5922):1705. https://doi.org/10.1126/science.1166999.

    Article  CAS  Google Scholar 

  22. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81(1):109. https://doi.org/10.1103/RevModPhys.81.109.

    Article  CAS  Google Scholar 

  23. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756. https://doi.org/10.1021/ja062677d.

    Article  CAS  Google Scholar 

  24. Hong S, Park J, Heejun K, Kim YG, Kim HJ. A review of multi-stacked active-layer structures for solution-processed oxide semiconductor thin-film transistors. J Inf Disp. 2016;17(3):93. https://doi.org/10.1080/15980316.2016.1200501.

    Article  CAS  Google Scholar 

  25. Lee JS, Kwack YJ, Choi WS. Inkjet-printed In2O3 thin-film transistor below 200 degrees C. ACS Appl Mater Interfaces. 2013;5(22):11578. https://doi.org/10.1021/am4025774.

    Article  CAS  Google Scholar 

  26. Sun H, Wu L, Gao N, Ren J, Qu X. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl Mater Interfaces. 2013;5(3):1174. https://doi.org/10.1021/am3030849.

    Article  CAS  Google Scholar 

  27. Thakur A, Kang SJ, Baik JY, Yoo H, Lee IJ, Lee HK, Jung S, Park J, Shin HJ. Blue shift in the optical band gap of amorphous Hf–In–Zn–O thin films deposited by RF sputtering. J Alloys Compd. 2012;525:172. https://doi.org/10.1016/j.jallcom.2012.02.091.

    Article  CAS  Google Scholar 

  28. Neubeck S, Ponomarenko LA, Freitag F, Giesbers AJM, Zeitler U, Morozov SV, Blake P, Geim AK, Novoselov KS. From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small. 2010;6(14):1469. https://doi.org/10.1002/smll.201000291.

    Article  CAS  Google Scholar 

  29. Wang L, Li B, Xu F, Shi X, Feng D, Wei D, Li Y, Feng Y, Wang Y, Jia D, Zhou Y. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens Bioelectron. 2016;79:1. https://doi.org/10.1016/j.bios.2015.11.085.

    Article  CAS  Google Scholar 

  30. Zhang Y, He G, Wang L, Wang W, Xu X, Liu W. Ultraviolet-assisted low-thermal-budget-driven α-InGaZnO thin films for high-performance transistors and logic circuits. ACS Nano. 2022;16(3):4961. https://doi.org/10.1021/acsnano.2c01286.

    Article  CAS  Google Scholar 

  31. Su BY, Chu SY, Juang YD, Liu SY. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors. J Alloys Compd. 2013;580:10. https://doi.org/10.1016/j.jallcom.2013.05.077.

    Article  CAS  Google Scholar 

  32. Akbar S, Hasanain SK, Abbas M, Ozcan S, Ali B, Shah SI. Defect induced ferromagnetism in carbon-doped ZnO thin films. Solid State Commun. 2011;151(1):17. https://doi.org/10.1016/j.ssc.2010.10.035.

    Article  CAS  Google Scholar 

  33. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666. https://doi.org/10.1126/science.1102896.

    Article  CAS  Google Scholar 

  34. Feng J, Dong H, Pang B, Chen Y, Yu L, Dong L. Tuning the electronic and optical properties of graphene quantum dots by selective boronization. J Mater Chem C. 2019;7(2):237. https://doi.org/10.1039/c8tc03863e.

    Article  CAS  Google Scholar 

  35. Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X. High-speed graphene transistors with a self-aligned nanowire gate. Nature. 2010;467(7313):305. https://doi.org/10.1038/nature09405.

    Article  CAS  Google Scholar 

  36. Jin JW, Nathan A, Barquinha P, Pereira L, Fortunato E, Martins R, Cobb B. Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress. AIP Adv. 2016;6(8):085321. https://doi.org/10.1063/1.4962151.

    Article  CAS  Google Scholar 

  37. Jeong JK, Yang HW, Jeong JH, Mo YG, Kim HD. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl Phys Lett. 2008;93(12):123508. https://doi.org/10.1063/1.2990657.

    Article  CAS  Google Scholar 

  38. Liu PT, Chou YT, Teng LF. Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress. Appl Phys Lett. 2009;95(23):233504. https://doi.org/10.1063/1.3272016.

    Article  CAS  Google Scholar 

  39. Ryu B, Noh HK, Choi EA, Chang KJ. O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Appl Phys Lett. 2010;97(2):022108. https://doi.org/10.1063/1.3464964.

    Article  CAS  Google Scholar 

  40. Chen S, Zhang WP, Cui XM, Ding SJ, Sun QQ, Zhang W. Monochromatic light-assisted erasing effects of In-Ga-Zn-O thin film transistor memory with Al2O3/Zn-doped Al2O3/Al2O3 stacks. Appl Phys Lett. 2014;104(10):103504. https://doi.org/10.1063/1.4868387.

    Article  CAS  Google Scholar 

  41. Leiter F, Alves H, Pfisterer D, Romanov NG, Hofmann DM, Meyer BK. Oxygen vacancies in ZnO. Phys B. 2003;340–342:201. https://doi.org/10.1016/j.physb.2003.09.031.

    Article  CAS  Google Scholar 

  42. Yun MG, Kim SH, Ahn CH, Cho SW, Cho HK. Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors. J Phys D Appl Phys. 2013;46(47):475106. https://doi.org/10.1088/0022-3727/46/47/475106.

    Article  CAS  Google Scholar 

  43. Park MJ, Bak JY, Choi JS, Yoon SM. Channel composition effect on the bias-illumination-stress stability of solution-processed transparent oxide thin-film transistors using amorphous aluminum-indium-zinc-oxide channel layers. Ecs J Solid State Sci. 2014;3(9):3005. https://doi.org/10.1149/2.002409jss.

    Article  CAS  Google Scholar 

  44. Jeong YJ, An TK, Yun DJ, Kim LH, Park S, Kim Y, Nam S, Lee KH, Kim SH, Jang J, Park CE. Photo-patternable ZnO thin films based on cross-linked zinc acrylate for organic/inorganic hybrid complementary inverters. ACS Appl Mater Interfaces. 2016;8(8):5499. https://doi.org/10.1021/acsami.6b00259.

    Article  CAS  Google Scholar 

  45. Harada N, Yagi K, Sato S, Yokoyama N. A polarity-controllable graphene inverter. Appl Phys Lett. 2010;96(1):012102. https://doi.org/10.1063/1.3280042.

    Article  CAS  Google Scholar 

  46. Cho IT, Lee JW, Park JM, Cheong WS, Hwang CS, Kwak JS, Cho IH, Kwon HI, Shin H, Park BG, Lee JH. Full-swing a-IGZO inverter with a depletion load using negative bias instability under light illumination. IEEE Electron Device Lett. 2012;33(12):1726. https://doi.org/10.1109/led.2012.2221454.

    Article  CAS  Google Scholar 

  47. Liu Y, He H, Chen YY, Chen R, Wang L, Cai S, Xiong X. Temperature-Dependent low-frequency noise in indium–zinc–oxide thin-film transistors down to 10 K. IEEE Trans Electron Dev. 2019;66(5):2192. https://doi.org/10.1109/TED.2019.2902449.

    Article  CAS  Google Scholar 

  48. Wang Y, Ho VX, Henschel ZN, Cooney MP, Vinh NQ. Effect of high-kappa dielectric layer on 1/f noise behavior in graphene field-effect transistors. ACS Appl Nano Mater. 2021;4(4):3647. https://doi.org/10.1021/acsanm.1c00154.

    Article  CAS  Google Scholar 

  49. Fung TC, Baek G, Kanicki J. Low frequency noise in long channel amorphous In-Ga-Zn-O thin film transistors. J Appl Phys. 2010;108(7):074518. https://doi.org/10.1063/1.3490193.

    Article  CAS  Google Scholar 

  50. Lee SK, Kang CG, Lee YG, Cho C, Park E, Chung HJ, Seo S, Lee HD, Lee BH. Correlation of low frequency noise characteristics with the interfacial charge exchange reaction at graphene devices. Carbon. 2012;50(11):4046. https://doi.org/10.1016/j.carbon.2012.04.051.

    Article  CAS  Google Scholar 

  51. Liu G, Stillman W, Rumyantsev S, Shao Q, Shur M, Balandin AA. Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl Phys Lett. 2009;95(3):033103. https://doi.org/10.1063/1.3180707.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11774001), Anhui Project (No. Z010118169) and Open Fund Project of Zhejiang Engineering Research Center of MEMS in Shaoxing University (No. MEMSZJERC2202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang He.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XF., He, G., Wang, LN. et al. Graphene quantum dots modulated solution-derived InGaO thin-film transistors and stress stability exploration. Rare Met. 42, 2294–2306 (2023). https://doi.org/10.1007/s12598-023-02307-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02307-y

Keywords

Navigation