Skip to main content

Advertisement

Log in

Three-dimensional ordered porous N-doped carbon-supported accessible Ni-Nx active sites for efficient CO2 electroreduction

  • LETTER
  • Published:
Rare Metals Aims and scope Submit manuscript

Electrocatalytic reduction of carbon dioxide (CO2RR) into high value-added chemicals and fuels has been regarded as a promising approach to achieve carbon neutrality. Though nickel-nitrogen-carbon (Ni-N-C) electrocatalysts have shown superior CO2RR performance, the synthesis of highly effective Ni-N-C catalyst is still challenging. Herein, a three-dimensional (3D) ordered porous nitrogen-doped carbon-supported Ni-Nx catalyst has been synthesized by direct pyrolysis of a mixture of SiO2, polyvinyl pyrrolidone, nickel-phenanthroline complex, followed by the removal of the SiO2 templates. Benefiting from the porous structure and accessible active sites, the optimized catalyst exhibits a high CO Faradaic efficiency above 85% between –0.6 and –0.9 V versus reversible hydrogen electrode (vs. RHE), and a large CO current density (jCO) of –16.2 mA·cm−2 at –0.8 V (vs. RHE). Density functional theory (DFT) calculations demonstrate that the Ni-N-C catalyst with Ni-Nx species can enhance CO2RR reaction dynamic process and suppress hydrogen evolution reaction, thus improving the conversion efficiency toward CO2RR.

Graphical Abstract

摘要

电催化还原二氧化碳(CO2RR)为高附加值的化学品和燃料,是实现碳中和的一个有前景的途径。尽管镍-氮-碳 (Ni-N-C)电催化剂已显示出不错的二氧化碳还原性能,但高效的Ni-N-C 催化剂的合成仍然是一个挑战。在此,通过直接热解二氧化硅、聚乙烯吡咯烷酮、镍-菲罗啉复合物的混合物,然后去除二氧化硅模板,合成了一种Ni-Nx 位点锚定的三维(3D)有序多孔的氮掺杂碳支撑的电催化剂。受益于多孔结构和可利用的活性位点,优化后的 催化剂在‒0.6 至‒0.9 V(vs. RHE)之间表现出85%以上的高CO 法拉达效率,并且在‒0.8V 下, CO 电流密度 (jCO),达到‒16.2 mA·cm-2。密度泛函理论(DFT)计算表明,含有Ni-Nx 位点锚定的Ni-N-C 催化剂可以促进 CO2RR 过程,同时抑制析氢反应,从而提高CO2RR 催化性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu HF, Xia J, Zhang N, Cheng H, Bi WT, Zu XL, Chu WS, Wu HA, Wu CZ, Xie Y. Solid-liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat Catal. 2021;4(4):202. https://doi.org/10.1038/s41929-021-00608-y.

    Article  CAS  Google Scholar 

  2. Li JJ, Zhang ZC. K+-enhanced electrocatalytic CO2 reduction to multicarbon products in strong acid. Rare Met. 2022;41(3):723. https://doi.org/10.1007/s12598-021-01862-6.

    Article  CAS  Google Scholar 

  3. Pei J, Wang T, Sui R, Zhang X, Zhou D, Qin F, Zhao X, Liu Q, Yan W, Dong J, Zheng L, Li A, Mao J, Zhu W, Chen W, Zhuang Z. N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ Sci. 2021;14(5):3019. https://doi.org/10.1039/D0EE03947K.

    Article  CAS  Google Scholar 

  4. Liu K, Wang J, Shi M, Yan J, Jiang Q. Simultaneous achieving of high faradaic efficiency and CO partial current density for CO2 reduction via robust, noble-metal-free Zn nanosheets with favorable adsorption energy. Adv Energy Mater. 2019;9(21):1900276. https://doi.org/10.1002/aenm.201900276.

    Article  CAS  Google Scholar 

  5. Li Q, Wang YC, Zeng J, Zhao X, Chen C, Wu QM, Chen LM, Chen ZY, Lei YP. Bimetallic chalcogenides for electrocatalytic CO2 reduction. Rare Met. 2021;40(12):3442. https://doi.org/10.1007/s12598-021-01772-7

    Article  CAS  Google Scholar 

  6. Yang H, Huang Y, Deng J, Wu Y, Han N, Zha C, Li L, Li Y. Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. J Energy Chem. 2019;37:93. https://doi.org/10.1016/j.jechem.2018.12.004.

    Article  Google Scholar 

  7. Liu XX, Chen C, He Q, Kong Q, Blackwood DJ, Li NW, Yu L, Chen JS. Self-supported transition metal-based nanoarrays for efficient energy storage. Chem Rec. 2022. https://doi.org/10.1002/tcr.202100294.

    Article  Google Scholar 

  8. Yu X, Shao M, Yang X, Li C, Li T, Li D, Wang R, Yin L. A high-performance potassium-ion capacitor based on a porous carbon cathode originated from the Aldol reaction product. Chin Chem Lett. 2020;31(9):2215. https://doi.org/10.1016/j.cclet.2019.11.012.

    Article  CAS  Google Scholar 

  9. Abbas M, Sial MAZG. New horizon in stabilization of single atoms on metal-oxide supports for CO2 reduction. Nano Mater Sci. 2021;3(4):368. https://doi.org/10.1016/j.nanoms.2021.07.009.

    Article  CAS  Google Scholar 

  10. Yang H, Liu Y, Liu X, Wang X, Tian H, Waterhouse GIN, Kruger PE, Telfer SG, Ma S. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience. 2022;2(2):227. https://doi.org/10.1016/j.esci.2022.02.005.

    Article  Google Scholar 

  11. Zhang Y, Hu T, Ke C, Han F, Xiao W, Yang X. Ru nanoclusters confined on α/β cobalt hydroxide nanosheets as efficient bifunctional oxygen electrocatalysts for Zn-air batteries. Inorg Chem Front. 2022. https://doi.org/10.1039/d2qi01585d.

    Article  Google Scholar 

  12. Shen S, Han C, Wang B, Wang Y. Engineering d-band center of nickel in nickel@nitrogen-doped carbon nanotubes array for electrochemical reduction of CO2 to CO and ZN-CO2 batteries. Chin Chem Lett. 2021;33(8):3721. https://doi.org/10.1016/j.cclet.2021.10.063.

    Article  CAS  Google Scholar 

  13. Cui Y, Zhang Y, Cao Z, Gu J, Du Z, Li B, Yang S. A perspective on high-entropy two-dimensional materials. SusMat. 2022;2(1):65. https://doi.org/10.1002/sus2.47.

    Article  CAS  Google Scholar 

  14. Zhang S, Gao XT, Hou PF, Zhang TR, Kang P. Nitrogen-doped Zn–Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Met. 2021;40(11):3117. https://doi.org/10.1007/s12598-021-01774-5.

    Article  CAS  Google Scholar 

  15. Yin C, Li Q, Zheng J, Ni Y, Wu H, Kjøniksen AL, Liu C, Lei Y, Zhang Y. Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. Adv Powder Mater. 2022;1(4):100055. https://doi.org/10.1016/j.apmate.2022.100055.

    Article  Google Scholar 

  16. Du J, Liu L, Yu Y, Zhang Y, Chen A. “Dissolution-reassembly” for N-doped hollow micro/meso-carbon spheres with high supercapacitor performance. Chin Chem Lett. 2019;30(7):1423. https://doi.org/10.1016/j.cclet.2019.03.004.

    Article  CAS  Google Scholar 

  17. Zeng J, Bejtka K, Ju W, Castellino M, Chiodoni A, Sacco A, Farkhondehfal MA, Hernández S, Rentsch D, Battaglia C, Pirri CF. Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Appl Catal B Environ. 2018;236:475. https://doi.org/10.1016/j.apcatb.2018.05.056.

    Article  CAS  Google Scholar 

  18. Chen Y, Chen K, Fu J, Yamaguchi A, Li H, Pan H, Hu J, Miyauchi M, Liu M. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Mater Sci. 2020;2(3):235. https://doi.org/10.1016/j.nanoms.2019.10.006.

    Article  Google Scholar 

  19. Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed. 2018;57(21):6054. https://doi.org/10.1002/anie.201711255.

    Article  CAS  Google Scholar 

  20. Hu C, Bai S, Gao L, Liang S, Yang J, Cheng SD, Mi SB, Qiu J. Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts. ACS Catal. 2019;9(12):11579. https://doi.org/10.1021/acscatal.9b03175.

    Article  CAS  Google Scholar 

  21. Yang CH, Nosheen F, Zhang ZC. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021;40(6):1412. https://doi.org/10.1007/s12598-020-01600-4.

    Article  CAS  Google Scholar 

  22. Yan D, Zhang L, Shen L, Hu R, Xiao W, Yang X. Pd nanoparticles enbedded in N-enriched MOF-derived architectures for efficient oxygen reduction reaction in alkaline media. Green Energy Environ. 2022. https://doi.org/10.1016/j.gee.2022.01.011.

    Article  Google Scholar 

  23. Zhao L, Wu R, Wang J, Li Z, Wei X, Chen JS, Chen Y. Synthesis of noble metal-based intermetallic electrocatalysts by space-confined pyrolysis: recent progress and future perspective. J Energy Chem. 2021;60:61. https://doi.org/10.1016/j.jechem.2020.12.021.

    Article  CAS  Google Scholar 

  24. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 lectroreduction. Rare Met. 2021;40(11):3019. https://doi.org/10.1007/s12598-021-01736-x.

    Article  CAS  Google Scholar 

  25. Jia Y, Li F, Fan K, Sun L. Cu-based bimetallic electrocatalysts for CO2 reduction. Adv Powder Mater. 2021;1(1):100012. https://doi.org/10.1016/j.apmate.2021.10.003.

    Article  Google Scholar 

  26. Wang J, Zhu Z, Wei X, Li Z, Chen JS, Wu R, Wei Z. Hydrogen-mediated synthesis of 3D hierarchical porous zinc catalyst for CO2 electroreduction with high current density. J Phys Chem C. 2021;125(43):23784. https://doi.org/10.1021/acs.jpcc.1c07498.

    Article  CAS  Google Scholar 

  27. Li Z, Wu R, Xiao S, Yang Y, Lai L, Chen JS, Chen Y. Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem Eng J. 2022;430:132882. https://doi.org/10.1016/j.cej.2021.132882.

    Article  CAS  Google Scholar 

  28. Zhang Y, Qi K, Li J, Karamoko BA, Lajaunie L, Godiard F, Oliviero E, Cui X, Wang Y, Zhang Y, Wu H, Wang W, Voiry D. 26% cm2 single-pass CO2-to-CO conversion using Ni single atoms supported on ultra-thin carbon nanosheets in a flow electrolyzer. ACS Catal. 2021;11(20):12701. https://doi.org/10.1021/acscatal.1c03231.

    Article  CAS  Google Scholar 

  29. Wei X, Xiao S, Wu R, Zhu Z, Zhao L, Li Z, Wang J, Chen JS, Wei Z. Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction. Appl Catal B: Environ. 2022;302:120861. https://doi.org/10.1016/j.apcatb.2021.120861.

    Article  CAS  Google Scholar 

  30. Li Z, Wu R, Zhao L, Li P, Wei X, Wang J, Chen JS, Zhang T. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: recent advances and future perspectives. Nano Res. 2021;14(11):3795. https://doi.org/10.1007/s12274-021-3363-6.

    Article  CAS  Google Scholar 

  31. Wang C, Liu Y, Ren H, Guan Q, Chou S, Li W. Diminishing the uncoordinated N species in Co–N-C catalysts toward highly efficient electrochemical CO2 reduction. ACS Catal. 2022;12(4):2513. https://doi.org/10.1021/acscatal.1c05029.

    Article  CAS  Google Scholar 

  32. Duarte M, Daems N, Hereijgers J, Arenas-Esteban D, Bals S, Breugelmans T. Enhanced CO electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor. J CO2 Utili. 2021;50:101583. https://doi.org/10.1016/j.jcou.2021.101583.

    Article  CAS  Google Scholar 

  33. Zhu Z, Li Z, Wang J, Li R, Chen H, Li Y, Chen JS, Wu R, Wei Z. Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction. eScience. 2022;2:445. https://doi.org/10.1016/j.esci.2022.05.002.

    Article  Google Scholar 

  34. Möller T, Ju W, Bagger A, Wang X, Luo F, Ngo TT, Varela AS, Rossmeisl J, Strasser P. Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities. Energy Environ Sci. 2019;12(2):640. https://doi.org/10.1039/c8ee02662a.

    Article  CAS  Google Scholar 

  35. Zhang M, Wu TS, Hong S, Fan Q, Soo YL, Masa J, Qiu J, Sun Z. Efficient electrochemical reduction of CO2 by Ni-N-C catalysts with tunable performance. ACS Sustain Chem Eng. 2019;7(17):15030. https://doi.org/10.1021/acssuschemeng.9b03502.

    Article  CAS  Google Scholar 

  36. Zhu Z, Li Z, Wei X, Wang J, Xiao S, Li R, Wu R, Chen JS. Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes. Carbon. 2021;185:9. https://doi.org/10.1016/j.carbon.2021.08.072.

    Article  CAS  Google Scholar 

  37. Li C, Ju W, Vijay S, Timoshenko J, Mou K, Cullen DA, Yang J, Wang X, Pachfule P, Bruckner S, Jeon HS, Haase FT, Tsang SC, Rettenmaier C, Chan K, Cuenya BR, Thomas A, Strasser P. Covalent organic framework (COF) derived Ni-N-C catalysts for electrochemical CO2 reduction: unraveling fundamental kinetic and structural parameters of the active sites. Angew Chem Int Ed. 2022;61(15):e202114707. https://doi.org/10.1002/anie.202114707.

    Article  CAS  Google Scholar 

  38. Pan F, Deng W, Justiniano C, Li Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl Catal B Environ. 2018;226:463. https://doi.org/10.1016/j.apcatb.2018.01.001.

    Article  CAS  Google Scholar 

  39. Wang X, Sang X, Dong CL, Yao S, Shuai L, Lu J, Yang B, Li Z, Lei L, Qiu M, Dai L, Hou Y. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angew Chem Int Ed. 2021;60(21):11959. https://doi.org/10.1002/anie.202100011.

    Article  CAS  Google Scholar 

  40. Wang C, Hu X, Hu X, Liu X, Guan Q, Hao R, Liu Y, Li W. Typical transition metal single-atom catalysts with a metal-pyridine N structure for efficient CO2 electroreduction. Appl Catal B Environ. 2021;296:120331. https://doi.org/10.1016/j.apcatb.2021.120331.

    Article  CAS  Google Scholar 

  41. Guo H, Si DH, Zhu HJ, Li QX, Huang YB, Cao R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience. 2022;2(3):295. https://doi.org/10.1016/j.esci.2022.03.007.

    Article  Google Scholar 

  42. Leverett J, Yuwono JA, Kumar P, Tran-Phu T, Qu J, Cairney J, Wang X, Simonov AN, Hocking RK, Johannessen B, Dai L, Daiyan R, Amal R. Impurity tolerance of unsaturated Ni-N-C active sites for practical electrochemical CO2 reduction. ACS Energy Lett. 2022;7(3):920. https://doi.org/10.1021/acsenergylett.1c02711.

    Article  CAS  Google Scholar 

  43. Yang M, Huang M, Li Y, Feng Z, Huang Y, Chen H, Xu Z, Liu H, Wang Y. Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens Actuators B Chem. 2022;364:131867. https://doi.org/10.1016/j.snb.2022.131867.

    Article  CAS  Google Scholar 

  44. Wang J, Li Z, Zhu Z, Jiang J, Li Y, Chen J, Niu X, Chen JS, Wu R. Tailoring the interactions of heterostructured Ni4N/Ni3ZnC0.7 for efficient CO2 electroreduction. J Energy Chem. 2022;75:1. https://doi.org/10.1016/j.jechem.2022.07.037.

    Article  CAS  Google Scholar 

  45. Zheng W, Wang Y, Shuai L, Wang X, He F, Lei C, Li Z, Yang B, Lei L, Yuan C, Qiu M, Hou Y, Feng X. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv Funct Mater. 2021;31(15):2008146. https://doi.org/10.1002/adfm.202008146.

    Article  CAS  Google Scholar 

  46. Lu Q, Chen C, Di Q, Liu W, Sun X, Tuo Y, Zhou Y, Pan Y, Feng X, Li L, Chen D, Zhang J. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range. ACS Catal. 2022;12(2):1364. https://doi.org/10.1021/acscatal.1c04825.

    Article  CAS  Google Scholar 

  47. Li H, Xiao N, Hao M, Song X, Wang Y, Ji Y, Liu C, Li C, Guo Z, Zhang F, Qiu J. Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. Chem Eng J. 2018;351:613. https://doi.org/10.1016/j.cej.2018.06.077.

    Article  CAS  Google Scholar 

  48. Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy. 2016;24:1. https://doi.org/10.1016/j.nanoen.2016.03.024.

    Article  CAS  Google Scholar 

  49. Ning H, Guo D, Wang X, Tan Z, Wang W, Yang Z, Li L, Zhao Q, Hao J, Wu M. Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch. J Energy Chem. 2021;56:113. https://doi.org/10.1016/j.jechem.2020.07.049.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2021YFB2401902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Cheng or Jun-Song Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16751 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, SJ., Cheng, H., Yu, J. et al. Three-dimensional ordered porous N-doped carbon-supported accessible Ni-Nx active sites for efficient CO2 electroreduction. Rare Met. 42, 1800–1807 (2023). https://doi.org/10.1007/s12598-022-02247-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02247-z

Navigation