Skip to main content
Log in

Formation of novel TRIP-ductilized bulk metallic glass composites by manipulating nucleation kinetics via minor alloying

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

A series of conical bulk metallic glass composites (BMGCs) with compositions of Zr47Cu47−xAl5Ag1Gax (x = 0, 1, 2, 4; at%) were synthesized using the minor alloying method to investigate the effect of Ga addition on the glass-forming ability (GFA), microstructure uniformity and mechanical properties. The results showed that the addition of less than 2 at% Ga could effectively promote the base alloy’s GFA, and in turn, the critical forming diameters of the BMGCs which exhibited evenly distributed B2-CuZr spheroids embedded in the glass matrix. This is attributed to the increase in nucleation energy barrier owing to the minor Ga addition that reduces the thermodynamic driving force for the B2 formation, thus leading to reduced nucleation rates, smaller volume fractions of B2, and enlarged inter-spacings between B2 spheroids while suppressing the agglomeration of B2 spheroids in the BMGCs. As such, the 1 at% Ga addition was found to yield an optimal BMGC which possessed good compressive plasticity with a considerably large uniform deformation strain up to 8%. This study has important implications for designing novel BMGCs by manipulating the nucleation kinetics via minor alloying.

Graphical Abstract

摘要

本研究通过微合金化法制备了一系列成分为Zr47Cu47‒xAl5Ag1Gax (x=0, 1, 2, 4 at%)的圆锥形块体非晶复合材料,并研究了Ga的添加对合金非晶形成能力,组织均匀性及力学性能的影响。研究结果表明,小于2 at% Ga的添加可以有效地提高Zr47Cu47Al5Ag1合金的非晶形成能力,从而提高块体非晶复合材料的临界形成直径,该非晶复合材料的B2-CuZr晶球均匀地分布在非晶基体中。这是由于微量Ga的添加提高了形核能垒,降低了B2相形成的热力学驱动力,从而降低块体非晶复合材料中B2相的形核速率,减小B2相的体积分数,并增加B2晶球之间的间距,抑制B2晶球之间的粘连。研究表明,1 at% Ga的添加可以获得具有良好压缩塑性的非晶复合材料,其均匀的压缩应变高达8%。本研究对通过微合金化法调控形核动力学来设计新型块体非晶复合材料具有重要意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Eng R Rep. 2004;44:45. https://doi.org/10.1016/j.mser.2004.03.001.

    Article  CAS  Google Scholar 

  2. Johnson WL. Bulk glass-forming metallic alloys: science and technology. Mater Res Bull. 1999;24:42. https://doi.org/10.1557/S0883769400053252.

    Article  CAS  Google Scholar 

  3. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279. https://doi.org/10.1016/S1359-6454(99)00300-6.

    Article  CAS  Google Scholar 

  4. Chao Q, Wang Q, Dong Y. Dynamic mechanical behavior of a Zr-based bulk metallic glass during glass transition and crystallization. Rare Met. 2009;28(1):72. https://doi.org/10.1007/s12598-009-0014-6.

    Article  CAS  Google Scholar 

  5. Han KM, Jiang H, Wang YM, Qiang JB. Zr-Ti-Al-Fe-Cu bulk metallic glasses for biomedical device application. Rare Met. 2021;40(5):1239. https://doi.org/10.1007/s12598-020-01644-6.

    Article  CAS  Google Scholar 

  6. Wang G, Huang YJ, Makhanlall D, Shen J. Resistance spot welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass: experiments and finite element modeling. Rare Met. 2017;36(2):123. https://doi.org/10.1007/s12598-014-0354-8.

    Article  CAS  Google Scholar 

  7. Xie ZW, Zhang YZ, Yang YZ, Chen XZ, Tao PJ. Effects of rare-earth elements on the glass-forming ability and mechanical properties of Cu46Zr47−xAl7Mx (M = Ce, Pr, Tb, and Gd) bulk metallic glasses. Rare Met. 2010;29(5):444. https://doi.org/10.1007/s12598-010-0147-7.

    Article  CAS  Google Scholar 

  8. Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476. https://doi.org/10.1007/s12598-019-01245-y.

    Article  CAS  Google Scholar 

  9. Schuh C, Hufnagel T, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067. https://doi.org/10.1016/j.actamat.2007.01.052.

    Article  CAS  Google Scholar 

  10. Zhang Y, Greer AL. Thickness of shear bands in metallic glasses. Appl Phys Lett. 2006;89:071907. https://doi.org/10.1063/1.2336598.

    Article  CAS  Google Scholar 

  11. Schroers J. Processing of bulk metallic glass. Adv Mater. 2010;22:1566. https://doi.org/10.1002/adma.200902776.

    Article  CAS  Google Scholar 

  12. Wu Y, Song WL, Zhou J, Cao D, Wang H, Liu XJ, Lu ZP. Ductilization of bulk metallic glassy material and its mechanism. Acta Phys Sin. 2017;66:6111. https://doi.org/10.7498/aps.66.176111.

    Article  Google Scholar 

  13. Song WL, Song KK, Liu ZQ, Li R, Wu Y, Lu ZP. TRIP reinforced bulk metallic glass. Mater China. 2014;33:300. https://doi.org/10.7502/j.issn.1674-3962.2014.05.06.

    Article  CAS  Google Scholar 

  14. Wu Y, Xiao Y, Chen G, Liu CT, Lu ZP. Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv Mater. 2010;22:2770. https://doi.org/10.1002/adma.201000482.

    Article  CAS  Google Scholar 

  15. Liao YC, Song SM, Li TH, Chiang YL, Tsai PH, Nguyen VT, Li SY, Jang JSC, Huang JC. Significant TRIP-effect improvement by manipulating ZrCu-B2 distribution in ZrCuAlCo-based bulk metallic glass composites via inoculating Ta particles. J Alloys Compd. 2019;774:547. https://doi.org/10.1016/j.jallcom.2018.10.062.

    Article  CAS  Google Scholar 

  16. Pauly S, Gorantla S, Wang G, Kuhn U, Eckert J. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater. 2010;9:473. https://doi.org/10.1038/nmat2767.

    Article  CAS  Google Scholar 

  17. Chen Y, Tang CG, Jiang JZ. Bulk metallic glass composites containing B2 phase. Prog Mater Sci. 2021;121:100799. https://doi.org/10.1016/j.pmatsci.2021.100799.

    Article  CAS  Google Scholar 

  18. Wang D, Li PY. Thermodynamic and mechanical properties of Cu-Zr-Al-Ti bulk metallic glasses. AIP Adv. 2018;8:125003. https://doi.org/10.1063/1.5058205.

    Article  CAS  Google Scholar 

  19. Kuo CN, Huang JC, Li JB, Jang JSC, Lin CH, Nieh TG. Effects of B2 precipitate size on transformation-induced plasticity of Cu-Zr-Al glassy alloys. J Alloys Compd. 2014;590:453. https://doi.org/10.1016/j.jallcom.2013.12.156.

    Article  CAS  Google Scholar 

  20. Song G, Lee CH, Hong SH, Kim KB, Chen SY, Ma D, An K, Liaw PK. Martensitic transformation in a B2-containing CuZr-based BMG composite revealed by in situ neutron diffraction. J Alloys Compd. 2017;723:714. https://doi.org/10.1016/j.jallcom.2017.06.270.

    Article  CAS  Google Scholar 

  21. Escher B, Kaban I, Kühn U, Eckert J, Pauly S. Stability of the B2-CuZr phase in Cu-Zr-Al-Sc bulk metallic glass matrix composites. J Alloys Compd. 2019;790:657. https://doi.org/10.1016/j.jallcom.2019.03.139.

    Article  CAS  Google Scholar 

  22. Song KK, Pauly S, Wang Z, Kühn U, Eckert J. Effect of TaW particles on the microstructure and mechanical properties of metastable Cu47.5Zr47.5Al5 alloys. Mater Sci Eng A. 2013;587:372. https://doi.org/10.1016/j.msea.2013.09.010.

    Article  CAS  Google Scholar 

  23. Zhang ZY, Wu Y, Zhou J, Wang H, Liu XJ, Lu ZP. Strong work-hardening behavior in a Ti-based bulk metallic glass composite. Scr Mater. 2013;69:73. https://doi.org/10.1016/j.scriptamat.2013.03.004.

    Article  CAS  Google Scholar 

  24. Zhang ZY, Wu Y, Zhou J, Song WL, Cao D, Wang H, Liu XJ, Lu ZP. Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites. Intermetallics. 2013;42:68. https://doi.org/10.1016/j.intermet.2013.05.009.

    Article  CAS  Google Scholar 

  25. Sun HG, Song KK, Han XL, Xing H, Li XL, Wang SH, Kim JT, Chawake N, Maity T, Wang L, Eckert J. Martensitic transformation and plastic deformation of TiCuNiZr-based bulk metallic glass composites. Metals. 2018;8:196. https://doi.org/10.3390/met8030196.

    Article  CAS  Google Scholar 

  26. Cao D, Wu Y, Wang H, Liu XJ, Lu ZP. Effects of nitrogen on the glass formation and mechanical properties of a Ti-based metallic glass. Acta Metall Sin (Engl Lett). 2016;29:173. https://doi.org/10.1007/s40195-016-0374-5.

    Article  CAS  Google Scholar 

  27. Chen SS, Wu JJ, Tu JX, Li XH, Zou JZ, Hu Q, Zeng XR. Enhanced plasticity in a Ti-Ni-Nb-Zr shape memory bulk metallic glass composite with high Nb addition. Mater Sci Eng, A. 2017;704:192. https://doi.org/10.1016/j.msea.2017.08.021.

    Article  CAS  Google Scholar 

  28. Kim WC, Kim KC, Na MY, Jeong SH, Kim WT, Kim DH. Formation of crystalline phase in the glass matrix of Zr–Co–Al glass-matrix composites and its effect on their mechanical properties. Met Mater Int. 2017;23:1216. https://doi.org/10.1007/s12540-017-6851-1.

    Article  CAS  Google Scholar 

  29. Qiao JW, Jia H, Liaw PK. Metallic glass matrix composites. Mater Sci Eng R Rep. 2016;100:1. https://doi.org/10.1016/j.mser.2015.12.001.

    Article  Google Scholar 

  30. Ha DJ, Kim CP, Lee S. Correlation of microstructure and tensile properties of Ti-based amorphous matrix composites modified from conventional titanium alloys. Mater Sci Eng A. 2012;558:558. https://doi.org/10.1016/j.msea.2012.08.048.

    Article  CAS  Google Scholar 

  31. Song KK, Pauly S, Zhang Y, Gargarella P, Li R, Barekar NS, Kühn U, Stoica M, Eckert J. Strategy for pinpointing the formation of B2-CuZr in metastable CuZr-based shape memory alloys. Acta Mater. 2011;59:6620. https://doi.org/10.1016/j.actamat.2011.07.017.

    Article  CAS  Google Scholar 

  32. Liu ZQ, Wang H, Zhang T. Bulk metallic glass composites ductilized by core–shell structured dual crystalline phases through controlled inoculation. Intermetallics. 2014;45:24. https://doi.org/10.1016/j.intermet.2013.09.013.

    Article  CAS  Google Scholar 

  33. Song WL, Wu Y, Wang H, Liu XJ, Chen HW, Guo ZX, Lu ZP. Microstructural control via copious nucleation manipulated by in situ formed nucleants: large-sized and ductile metallic glass composites. Adv Mater. 2016;28:8156. https://doi.org/10.1002/adma.201601954.

    Article  CAS  Google Scholar 

  34. Porter DA, Easterling KE. Phase Transformations in Metals and Alloys (Revised Reprint). 3rd ed. Boca Raton: CRC Press; 2009. 12. https://doi.org/10.1201/9781439883570.

    Book  Google Scholar 

  35. Conner RD, Dandliker RB, Johnson WL. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 1998;46:6089. https://doi.org/10.1016/S1359-6454(98)00275-4.

    Article  CAS  Google Scholar 

  36. Pauly S, Liu G, Wang G, Das J, Kim KB, Kühn U, Kim DH, Eckert J. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites. Appl Phys Lett. 2009;95:101906. https://doi.org/10.1063/1.3222973.

    Article  CAS  Google Scholar 

  37. Liu ZQ, Liu G, Qu RT, Zhang ZF, Wu SJ, Zhang T. Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites. Sci Rep. 2014;4:04167. https://doi.org/10.1038/srep04167.

    Article  CAS  Google Scholar 

  38. Liu ZQ, Li R, Liu G, Su WH, Wang H, Li Y, Shi M, Luo XK, Wu GJ, Zhang T. Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Mater. 2012;60:3128. https://doi.org/10.1016/j.actamat.2012.02.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Open Research Fund of Songshan Lake Materials Laboratory (No. 2021SLABFN12), Guangdong Basic and Applied Basic Research Foundation (Nos. 2020B1515120077, 2019A1515110472, 2020A1515110893 and 2020B1515120065), and the National Natural Science Foundation of China (Nos. 52130108, 51971103, 52001184, and 52101200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Li Song, Sheng-Zhong Kou or Dong Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XL., Song, WL., Yang, M. et al. Formation of novel TRIP-ductilized bulk metallic glass composites by manipulating nucleation kinetics via minor alloying. Rare Met. 42, 2182–2188 (2023). https://doi.org/10.1007/s12598-022-02240-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02240-6

Navigation