Skip to main content
Log in

Heat treatment effect on structural evolution and hydrogen sorption properties of Y0.5La0.2Mg0.3−xNi2 compound

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

The effect of heat treatment on phase occurrence, crystal structures and hydrogen sorption properties of Y0.5La0.2Mg0.3−xNi2 compounds has been investigated. The targeted compounds were synthesized through induction melting and processed heat treatment at 700 and 900 °C, respectively. Phase occurrence and structural properties were studied by X-ray powder diffraction (XRD). The global compositions and phase compositions have been determined by inductively coupled plasma-optical emission spectrometer (ICP-AES) and electron probe micro-analysis (EPMA) respectively. The hydrogenation properties were characterized by pressure–composition isotherm measurements and cycle curves at 25 °C. The annealing temperature of 700 °C could boost the production of A2B4-type (Y, La, Mg)2Ni4 (A = rare earth, B = transition metal) phase, the Mg evaporation leads to the formation of La-doped AB3 phase. The La substitution limit inside the C15b Y0.7−zLazMg0.3Ni4 phase is estimated around z = 0.16. An exchange phenomenon has been confirmed in Y0.5La0.2Mg0.3−xNi2 compounds meaning that partial Y atoms share 4c sites with Mg. The substitution of La raised the atomic-size ratio rA/rB, resulting in a hydrogen-induced disproportionation (HID) of C15b-type A2B4 and C15-type AB2 phases upon hydrogen absorption and desorption. New A2B4 phases with more Mg content (close to YMgNi4) prefer to form upon HID. The annealing process at 900 °C and Mg evaporation stimulate the generation of a non-stoichiometric AB2.6Y0.48La0.19Mg0.10Ni2 compound, which shows a high reversible hydrogen absorption capacity of 1.63 wt%.

Graphical abstract

摘要

本文研究了热处理对Y0.5La0.2Mg0.3-xNi2合金相d的演变、晶体结构和吸氢性能的影响。合金样品通过感应熔炼、700和900 °C热处理合成。相组分和结构变化采用X射线粉末衍射(XRD)研究。样品的整体以及各相化学成分分别采用电感耦合原子发射光谱仪(ICP-AES)和电子探针显微分析(EPMA)测定。吸氢性能采用PCI和循环吸氢曲线表征。结果表明,700 °C的退火温度有助于A2B4型(Y, La, Mg)2Ni4相的生成,Mg蒸发导致含La的AB3相生成。La在C15b型Y0.7-zLazMg0.3Ni4相中的固溶度约为z ≈ 0.16。在Y0.5La0.2Mg0.3-xNi2合金中,产生的A2B4相存在混合占位,Y和Mg同时占据C15b晶格中4c位置。La的取代提高了rA/rB的原子半径比,导致C15b型A2B4C15型AB2相在吸放氢过程中发生氢致歧化(HID)。歧化产生的新A2B4相成分接近于YMgNi4。900 °C热处理导致Mg元素蒸发,形成了具有非化学计量比的AB2.6相(Y0.48La0.19Mg0.10Ni2),可逆吸氢容量达到1.63 wt%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Liang F, Lin J, Cheng Y, Yin DM, Wu YM, Wang LM. Gaseous sorption and electrochemical properties of rare-earth hydrogen storage alloys and their representative applications: a review of recent progress. Sci China Technol Sci. 2018;61(9):130. https://doi.org/10.1007/s11431-018-9316-0.

    Article  CAS  Google Scholar 

  2. Rusman NAA, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrog Energy. 2016;41(28):12108. https://doi.org/10.1016/j.ijhydene.2016.05.244.

    Article  CAS  Google Scholar 

  3. Ouyang LZ, Huang JL, Wang H, Liu JW, Zhu M. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Mater Chem Phys. 2017;200:164. https://doi.org/10.1016/j.matchemphys.2017.07.002.

    Article  CAS  Google Scholar 

  4. Liu W, Webb CJ, Gray EM. Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications. Int J Hydrog Energy. 2016;41(5):3485. https://doi.org/10.1016/j.ijhydene.2015.12.054.

    Article  CAS  Google Scholar 

  5. Liu JJ, Han SM, Li Y, Zhao X, Yang SQ, Zhao YM. Cooperative effects of Sm and Mg on electrochemical performance of La–Mg–Ni-based alloys with A2B7-and A5B19-type super-stacking structure. Int J Hydrog Energy. 2015;40(2):1116. https://doi.org/10.1016/j.ijhydene.2014.11.024.

    Article  CAS  Google Scholar 

  6. Zhang X, Wang L, Li BQ, Li J, Xiong W. Effects of substituting Ni with Cu on microstructure and electrochemical performance of A2B7-type La–Y–Ni-based hydrogen storage alloy. Chin J Rare Met. 2021;45(12):1438. https://doi.org/10.13373/j.cnki.cjrm.XY20060015.

    Article  Google Scholar 

  7. Ouyang LZ, Cao ZJ, Li LL, Wang H, Liu JW, Min D, Chen YW, Xiao FM, Tang RH, Zhu M. Enhanced high-rate discharge properties of La11.3Mg6.0Sm7.4Ni61.0Co7.2Al7.1 with added graphene synthesized by plasma milling. Int J Hydrog Energy. 2014;39(24):12765. https://doi.org/10.1016/j.ijhydene.2014.06.111.

    Article  CAS  Google Scholar 

  8. Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J Alloys Compd. 1997;257(1–2):115. https://doi.org/10.1016/S0925-8388(96)03132-5.

    Article  CAS  Google Scholar 

  9. Aoki K, Li XG, Masumoto T. Factors controlling hydrogen-induced amorphization of C15 Laves compounds. Acta Metall Mater. 1992;40(7):1717. https://doi.org/10.1016/0956-7151(92)90115-U.

    Article  CAS  Google Scholar 

  10. Aoki K, Dilixiati M, Ishikawa K. Amorphization of C15 Laves RFe2 compounds by hydrogen absorption. Mater Res Soc Symp Proc. 2003;753:535. https://doi.org/10.1557/proc-753-bb7.8.

    Article  CAS  Google Scholar 

  11. Aihara T, Aoki K, Masumoto T. Formation and crystallization of hydrogen-induced amorphous RNi2Hx (R=Sm, Gd, Dy, Ho, Er) alloys. Mater Trans JIM. 1992;33:15. https://doi.org/10.2320/matertrans1989.33.15.

    Article  CAS  Google Scholar 

  12. Aoki K, Li HW, Dilixiati M, Ishikawa K. Formation of crystalline and amorphous hydrides by hydrogenation of C15 Laves phase YFe2. Mater Sci Eng A. 2007. https://doi.org/10.1016/j.msea.2006.02.239.

    Article  Google Scholar 

  13. Aoki K, Yamamoto T, Masumoto T. Hydrogen induced amorphization in RNi2 Laves phases. Scr Metall. 1987;21:27. https://doi.org/10.1016/0036-9748(87)90401-7.

    Article  CAS  Google Scholar 

  14. Aoki K, Masumoto T. Hydrogen-induced amorphization of intermetallics. J Alloys Compd. 1995;231:20. https://doi.org/10.1016/0925-8388(95)01832-8.

    Article  CAS  Google Scholar 

  15. Verbovytskyy YV, Shtender VV, Lyutyy PY, Zavaliy IY. Electrode materials based on LaMgNi4xCox (0 ≤ x ≤ 1) alloys. Powder Metall Met Ceram. 2017;55(9–10):559. https://doi.org/10.1007/s11106-018-9986-9.

    Article  CAS  Google Scholar 

  16. Shtender VV, Denys RV, Paul-Boncour V, Riabov AB, Zavaliy IY. Hydrogenation properties and crystal structure of YMgT4 (T = Co, Ni, Cu) compounds. J Alloys Compd. 2014;603:7. https://doi.org/10.1016/j.jallcom.2014.03.030.

    Article  CAS  Google Scholar 

  17. Bobet JL, Lesportes P, Roquefere JG, Chevalier B, Asano K, Sakaki K, Akiba E. A preliminary study of some “pseudo-AB2” compounds: RENi4Mg with RE = La, Ce and Gd. Structural and hydrogen sorption properties. Int J Hydrog Energy. 2007;32(13):2422. https://doi.org/10.1016/j.ijhydene.2006.11.031.

    Article  CAS  Google Scholar 

  18. Terashita N, Akiba E. Hydriding properties of (Mg1xMx)Ni2 C15-type Laves phase alloys. Mater Trans. 2006;47(8):1890. https://doi.org/10.2320/matertrans.47.1890.

    Article  CAS  Google Scholar 

  19. Park I, Terashita N, Abe E. Hydrogenation-induced microstructure changes of pseudo-binary (PrxMg1x)Ni2 Laves compounds. J Alloys Compd. 2013;580:S81. https://doi.org/10.1016/j.jallcom.2013.01.108.

    Article  CAS  Google Scholar 

  20. Rodriguez-Carvajal J. Fullprof: a program for Rietveld refinement and pattern matching analysis. Phys B. 1993;192:55.

    CAS  Google Scholar 

  21. Ślebarski A. Investigation of the crystal structure of YNi2. J Common Met. 1988;141(1):L1. https://doi.org/10.1016/0022-5088(88)90223-8.

    Article  Google Scholar 

  22. Liu JB, Zhang K, Han JT, Li XG, Li YJ, Ma ML, Yuan JW, Li M. Homogenization heat treatment of Mg–7.0 wt%Y–1.0 wt%Nd–0.5 wt%Zr alloy. Rare Met. 2020;39(10):1196. https://doi.org/10.1007/s12598-015-0588-0.

    Article  CAS  Google Scholar 

  23. Liu BS, Li HX, Ren YP, Jiang M, Qin GW. Phase equilibria of low-Y side in Mg–Zn–Y system at 400 °C. Rare Met. 2020;39(3):262. https://doi.org/10.1007/s12598-018-1024-z.

    Article  CAS  Google Scholar 

  24. Aono K, Orimo S, Fujii H. Structural and hydriding properties of MgYNi4: a new intermetallic compound with C15b-type Laves phase structure. J Alloys Compd. 2000;309(1–2):L1. https://doi.org/10.1016/S0925-8388(00)01065-3.

    Article  CAS  Google Scholar 

  25. Song W, Li J, Zhang T, Hou X, Kou H. Formation mechanism of tetrahedral MgYNi4 phase. Mater Lett. 2015;145:193. https://doi.org/10.1016/j.matlet.2015.01.103.

    Article  CAS  Google Scholar 

  26. Roquefere JG, Chevalier B, Pöttgen R, Terashita N, Asano K, Akiba E, Bobet JL. Structural, magnetic, electrochemical and hydrogen absorption properties of GdyMg2yNi4xAlx compounds with 0.4 < y < 2 and 0 < x < 1.2. Intermetallics. Intermetallics. 2008;16(2):179. https://doi.org/10.1016/j.intermet.2007.09.002.

    Article  CAS  Google Scholar 

  27. Roquefere JG, Matar SF, Huot J, Bobet JL. X-ray/neutron diffraction studies and ab initio electronic structure of CeMgNi4 and its hydride. Solid State Sci. 2009;11(11):1971. https://doi.org/10.1016/j.solidstatesciences.2009.07.003.

    Article  CAS  Google Scholar 

  28. Terashita N, Sakaki K, Tsunokake S, Nakamura Y, Akiba E. Hydrogenation properties of ternary intermetallic compounds Mg2xPrxNi4. Mater Trans. 2012;53(3):513. https://doi.org/10.2320/matertrans.M2011334.

    Article  CAS  Google Scholar 

  29. Sakaki K, Terashita N, Tsunokake S, Nakamura Y, Akiba E. Effect of rare earth elements and alloy composition on hydrogenation properties and crystal structures of hydrides in Mg2xRExNi4. J Phys Chem C. 2012;116(36):19156. https://doi.org/10.1021/jp3052856.

    Article  CAS  Google Scholar 

  30. Hayakawa H, Akiba E, Gotoh M, Kohno T. Crystal structures of La–Mg–Nix (x = 3–4) system hydrogen storage alloys. Mater Trans. 2005;46(6):1393. https://doi.org/10.2320/matertrans.46.1393.

    Article  CAS  Google Scholar 

  31. Crivello JC, Zhang J, Latroche M. Structural stability of ABy phases in the (La, Mg)–Ni system obtained by density functional theory calculations. J Phys Chem C. 2011;115(51):25470. https://doi.org/10.1021/jp204835z.

    Article  CAS  Google Scholar 

  32. Kadir K, Sakai T, Uehara I. Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9: new phases in the AB2C9 system isostructural with LaMg2Ni9. J Alloys Compd. 1999;287(1–2):264. https://doi.org/10.1016/S0925-8388(99)00041-9.

    Article  CAS  Google Scholar 

  33. Ying HQ, Liu SN, Wu ZD, Dong WX, Ge JC, Provenzano HHV, Wang XL, Lan S. Phase selection rule of high-entropy metallic glasses with different short-to-medium-range orders. Rare Met. 2022;41(6):2021. https://doi.org/10.1007/s12598-022-01973-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2019YFE0103600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Jun Jiang or Jun-Xian Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1523 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Jiang, LJ., Li, P. et al. Heat treatment effect on structural evolution and hydrogen sorption properties of Y0.5La0.2Mg0.3−xNi2 compound. Rare Met. 42, 1813–1820 (2023). https://doi.org/10.1007/s12598-022-02232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02232-6

Navigation