Skip to main content
Log in

Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the polyoxyethylene (PEO)-based solid-state electrolytes, the low ionic conductivity of lithium ions limits its application in solid-state lithium batteries, so optimizing the conduction path of lithium ions is beneficial to improve the ionic conductivity. In this work, we report the use of hydrothermal carbon nano-sphere (HCS) modified glass fibers (GF) as a functional filler (GF@HCS) to improve the ionic conductivity of PEO composite solid-state electrolytes. The oxygen atoms in the hydroxyl groups on the surface of HCS can be complexed with Li ions as its transport sites, which means that it can promote the long-distance transport of Li ions along the glass fiber surface. With addition of 2 wt% GF@HCS fillers, the degree of crystallinity of PEO composite solid-state electrolyte is the smallest, and the ionic conductivity is significantly increased from 8.9 × 10–5 to 4.4 × 10–4  S·cm−1 at 60 °C. Moreover, the PEO composite solid-state electrolyte exhibits better lithium–metal interface stability in symmetric lithium batteries and superior rate performance in LiFePO4 solid-state batteries.

Graphical abstract

摘要

在PEO基全固态电解质中, 由于它的锂离子离子电导率太低限制了其在固态锂电池中的应用, 因此优化锂离子的传导路径有利于提高它的离子电导率。在这项工作中, 我们报告了使用水热碳纳米球 (HCS) 改性玻璃纤维 (GF) 作为功能填料 (GF@HCS) 来提高PEO复合电解质的离子电导率。HCS表面羟基中的氧原子可以与锂离子络合作为它的传输位点, 即它可以促进锂离子沿玻璃纤维表面长距离传输。添加质量分数2 %的GF@HCS填料后, PEO复合固态电解质的结晶度最小而且它的离子电导率在 60 °C时从 8.9×10–5 S·cm–1提高到 4.4×10–4 S·cm–1。此外, 复合固态电解质在锂金属对称电池中表现出更好的界面稳定性, 在LiFePO4固态电池中表现出优异的倍率性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zheng Y, Yao Y, Ou J, Li M, Luo D, Dou H, Li Z, Amine K, Yu A, Chen Z. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev. 2020;49(23):8790. https://doi.org/10.1039/d0cs00305k.

    Article  CAS  Google Scholar 

  2. Cui J, Chen X, Zhou Z, Zuo M, Xiao Y, Zhao N, Shi C, Guo X. Effect of continuous pressures on electrochemical performance of Si anodes. Mater Today Energy. 2021;20:100632. https://doi.org/10.1016/j.mtener.2020.100632.

    Article  CAS  Google Scholar 

  3. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409. https://doi.org/10.1007/s12598-020-01501-6.

    Article  CAS  Google Scholar 

  4. Zhang XD, Yue FS, Liang JY, Shi JL, Li H, Guo YG. Structure design of cathode electrodes for solid-state batteries: challenges and progress. Small Struct. 2020;1(3):2000042. https://doi.org/10.1002/sstr.202000042.

    Article  Google Scholar 

  5. Zhou Q, Ma J, Dong SM, Li XF, Cui GL. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31(50):1902029. https://doi.org/10.1002/adma.201902029.

    Article  CAS  Google Scholar 

  6. Ratner MA, Shriver DF. Ion-transport in solvent-free polymers. Chem Rev. 1988;88(1):109. https://doi.org/10.1021/cr00083a006.

    Article  CAS  Google Scholar 

  7. Wang Z, Shen L, Deng S, Cui P, Yao X. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater. 2021;33(25):2100353. https://doi.org/10.1002/adma.202100353.

    Article  CAS  Google Scholar 

  8. Guo Q, Xu F, Shen L, Wang Z, Wang J, He H, Yao X. Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. J Power Sources. 2021;498:229934. https://doi.org/10.1016/j.jpowsour.2021.229934.

    Article  CAS  Google Scholar 

  9. Yang S, Zhang Z, Shen L, Chen P, Gu Z, Chang M, Zhao Y, He H, Yao X. Gravity-driven poly(ethylene glycol)@Li1.5Al0.5Ge1.5(PO4)3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries. J Power Sources. 2022;518:23075. https://doi.org/10.1016/j.jpowsour.2021.230756.

    Article  CAS  Google Scholar 

  10. Papke BL, Ratner MA, Shriver DF. Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali-metal salts. J Phys Chem Solids. 1981;42(6):493. https://doi.org/10.1016/0022-3697(81)90030-5.

    Article  CAS  Google Scholar 

  11. Adebahr J, Gavelin P, Jannasch P, Ostrovskii D, Wesslen B, Jacobsson P. Cation coordination in ion-conducting gels based on PEO-grafted polymers. Solid State Ionics. 2000;135(1–4):149. https://doi.org/10.1016/s0167-2738(00)00294-0.

    Article  CAS  Google Scholar 

  12. Mullerplathe F, Vangunsteren WF. Computer-simulation of a polymer electrolyte—lithium iodide in amorphous poly(ethylene oxide). J Chem Phys. 1995;103(11):4745. https://doi.org/10.1063/1.470611.

    Article  Google Scholar 

  13. Maitra A, Heuer A. Cation transport in polymer electrolytes: a microscopic approach. Phys Rev Lett. 2007;98(22):227802. https://doi.org/10.1103/PhysRevLett.98.227802.

    Article  CAS  Google Scholar 

  14. Dygas JR, Misztal-Faraj B, Floljanczyk Z, Krok F, Marzantowicz M, Zygadlo-Monikowska E. Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO-salt complexes. Solid State Ion. 2003;157(1–4):249. https://doi.org/10.1016/s0167-2738(02)00217-5.

    Article  CAS  Google Scholar 

  15. Neat R, Glasse M, Linford R, Hooper A. Thermal history and polymer electrolyte structure—implications for solid-state battery design. Solid State Ion. 1986;18:1088. https://doi.org/10.1016/0167-2738(86)90314-0.

    Article  Google Scholar 

  16. Huang B, Li ZH, Zhu YM, Che Y, Wang CA. Tailored lithium metal/polymer electrolyte interface with LiTa2PO8 fillers in PEO-based composite electrolyte. Rare Met. 2022. https://doi.org/10.1007/s12598-021-01951-6.

    Article  Google Scholar 

  17. Jayathilaka P, Dissanayake M, Albinsson I, Mellander BE. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim Acta. 2002;47(20):3257. https://doi.org/10.1016/s0013-4686(02)00243-8.

    Article  CAS  Google Scholar 

  18. Dissanayake M, Jayathilaka P, Bokalawala RSP, Albinsson I, Mellander BE. Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte. J Power Sources. 2003;119:409. https://doi.org/10.1016/s0378-7753(03)00262-3.

    Article  Google Scholar 

  19. Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394(6692):456. https://doi.org/10.1038/28818.

    Article  CAS  Google Scholar 

  20. Cheng Z, Liu T, Zhao B, Shen F, Jin H, Han X. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021;34:388. https://doi.org/10.1016/j.ensm.2020.09.016.

    Article  Google Scholar 

  21. Chua S, Fang RP, Sun ZH, Wu MJ, Gu Z, Wang YZ, Hart JN, Sharma N, Li F, Wang DW. Hybrid solid polymer electrolytes with two-dimensional inorganic nanofillers. Chem A Eur J. 2018;24(69):18180. https://doi.org/10.1002/chem.201804781.

    Article  CAS  Google Scholar 

  22. Fan R, Liu C, He KQ, Cheng SHS, Chen DZ, Liao CZ, Li RKY, Tang JN, Lu ZG. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl Mater Interfaces. 2020;12(6):7222. https://doi.org/10.1021/acsami.9b20104.

    Article  CAS  Google Scholar 

  23. Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy. 2017;2(5):17035. https://doi.org/10.1038/nenergy.2017.35.

    Article  CAS  Google Scholar 

  24. Sheng OW, Jin CB, Luo JM, Yuan HD, Huang H, Gan YP, Zhang J, Xia Y, Liang C, Zhang WK, Tao XY. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 2018;18(5):3104. https://doi.org/10.1021/acs.nanolett.8b00659.

    Article  CAS  Google Scholar 

  25. Lin Y, Wang XM, Liu J, Miller JD. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy. 2017;31:478. https://doi.org/10.1016/j.nanoen.2016.11.045.

    Article  CAS  Google Scholar 

  26. Wang X, Hua H, Xie X, Zhang P, Zhao J. Hydroxyl on the filler surface promotes Li+ conduction in PEO all-solid-state electrolyte. Solid State Ion. 2021;372:115768. https://doi.org/10.1016/j.ssi.2021.115768.

    Article  CAS  Google Scholar 

  27. Baccile N, Laurent G, Babonneau F, Fayon F, Titirici MM, Antonietti M. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS C-13 NMR investigations. J Phys Chem C. 2009;113(22):9644. https://doi.org/10.1021/jp901582x.

    Article  CAS  Google Scholar 

  28. Evans J, Vincent CA, Bruce PG. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer. 1987;28(13):2324. https://doi.org/10.1016/0032-3861(87)90394-6.

    Article  CAS  Google Scholar 

  29. Sun XM, Li YD. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed. 2004;43(5):597. https://doi.org/10.1002/anie.200352386.

    Article  CAS  Google Scholar 

  30. Chen Z, Ma LJ, Li SQ, Geng JX, Song Q, Liu J, Wang CL, Wang H, Li J, Qin Z, Li SJ. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl Surf Sci. 2011;257(20):8686. https://doi.org/10.1016/j.apsusc.2011.05.048.

    Article  CAS  Google Scholar 

  31. Song XH, Gunawan P, Jiang RR, Leong SSJ, Wang KA, Xu R. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater. 2011;194:162. https://doi.org/10.1016/j.jhazmat.2011.07.076.

    Article  CAS  Google Scholar 

  32. Gong YT, Xie L, Li HR, Wang Y. Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant. Chem Commun. 2014;50(84):12633. https://doi.org/10.1039/c4cc04998e.

    Article  CAS  Google Scholar 

  33. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ion. 2014;266:25. https://doi.org/10.1016/j.ssi.2014.08.002.

    Article  CAS  Google Scholar 

  34. Lu Y, Zhao CZ, Yuan H, Cheng XB, Huang JQ, Zhang Q. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv Funct Mater. 2021;31(18):2009925. https://doi.org/10.1002/adfm.202009925.

    Article  CAS  Google Scholar 

  35. Nakayama M, Wada S, Kuroki S, Nogami M. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy Environ Sci. 2010;3(12):1995. https://doi.org/10.1039/c0ee00266f.

    Article  CAS  Google Scholar 

  36. Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878. https://doi.org/10.1021/acs.chemrev.0c00101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21875195, 22021001 and 52172184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Jun Zhou or Jin-Bao Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shen, X., Zhang, P. et al. Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 42, 875–884 (2023). https://doi.org/10.1007/s12598-022-02218-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02218-4

Keywords

Navigation