Skip to main content

Advertisement

Log in

Reasonable suppression of polysulfides/polyselenides shuttle based on MXene in Na-SeS2 batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal-sulfur/selenium batteries have become the focus of new-generation energy storage systems due to the advantages of low-cost and high energy density. However, it still suffers from the notorious shuttle of polysulfides/polyselenides, poor electronic conductivity and tremendous volume expansion. Herein, a dual defense system for polysulfides/polyselenides was proposed and constructed based on MXene. The nitrogen-doped porous carbon (NPC) decorated by Ti3C2Tx MXene (M@NPC) was employed as the SeS2 host (SeS2@M@NPC). Particularly, Ti3C2Tx sheets wrapped on NPC guarantee the rapid ion diffusion and serve as the first barrier for SeS2 and dissolved sodium polysulfides/polyselenides. Meanwhile, the few-layered Ti3C2Tx sheets coated on glass fiber separators act as the second barrier for alleviating the shuttle of polysulfides/polyselenides through physical interception and chemical adsorption. With this elaborate design, the integrated Na-SeS2 battery achieves a high specific capacity of 1243 mAh·g−1 at 1.0C, revealing a distinct superiority over its counterparts (SeS2@M@NPC, 1083 mAh·g−1 at 0.5C; and SeS2@NPC, 823 mAh·g−1 at 0.5C). The findings gained in this work provide a creative idea for the construction of durable room-temperature Na-SeS2 batteries based on MXenes and their derivative materials.

Graphical abstract

摘要

金属-硫/硒电池以其低成本、高能量密度的优势成为新一代储能系统的研究热点。然而,它仍然遭受着臭名昭著的多硫/多硒化物穿梭、较差的电子导电性和巨大的体积膨胀。在此基础上,提出并构建了一种基于MXene的多硫化物/多硒化物双重防御体系。采用Ti3C2Tx-MXene修饰的氮掺杂多孔碳(M@NPC)作为SeS2宿主(SeS2@M@NPC)。特别的是,包裹在NPC表面的Ti3C2Tx薄膜保证了离子的快速扩散,并成为负载的SeS2和可溶的多硫化钠/多硒化钠的第一道屏障。同时,在玻璃纤维隔膜上涂覆的少层Ti3C2Tx片作为第二道屏障,通过物理拦截和化学吸附缓解聚硫化物/聚硒化物的穿梭。通过这一精心设计,集成Na-SeS2电池在1.0C下实现了1243 mAh·g–1的高比容量,显示出明显的优越性(SeS2@M@NPC,在0.5C下1083 mAh·g–1;和SeS2@NPC, 在0.5C 823 mAh·g–1)。本研究的发现为构建基于MXenes及其衍生物材料的室温Na-SeS2电池提供了一个创造性的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng ZJ, Ye H, Guo ZP. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ Sci. 2021;14(4):1835. https://doi.org/10.1039/D0EE03181J.

    Article  CAS  Google Scholar 

  2. Qi YR, Li QJ, Wu YK, Bao SJ, Li CM, Chen YM, Wang GX, Xu MW. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat commun. 2021;12(1):1. https://doi.org/10.1038/s41467-021-26631-y.

    Article  CAS  Google Scholar 

  3. Subramanyan K, Divya M, Aravindan V. Dual-carbon Na-ion capacitors: progress and future prospects. J Mater Chem A. 2021;9(15):9431. https://doi.org/10.1039/D0TA12099E.

    Article  CAS  Google Scholar 

  4. Syali M, Kumar D, Mishra K, Kanchan DK. Recent advances in electrolytes for room-temperature sodium-sulfur batteries: a review. Energy Storage Mater. 2020;31:352. https://doi.org/10.1016/j.ensm.2020.06.023.

    Article  Google Scholar 

  5. Kumar D, Kanchan DK, Kumar S, Mishra K. Recent trends on tailoring cathodes for room-temperature Na-S batteries. Mater Sci Energy Technol. 2019;2(1):117. https://doi.org/10.1016/j.mset.2018.11.007.

    Article  Google Scholar 

  6. Yang T, Gao W, Guo B, Zhan R, Xu Q, He H, Bao SJ, Li XY, Chen YM, Xu MW. A railway-like network electrode design for room temperature Na-S battery. J Mater Chem A. 2019;7(1):150. https://doi.org/10.1039/C8TA09556F.

    Article  CAS  Google Scholar 

  7. Liu Y, Li X, Sun Y, Yang R, Lee Y, Ahn JH. Dual-porosity carbon derived from waste bamboo char for room-temperature sodium-sulfur batteries using carbonate-based electrolyte. Ionics. 2021;27(1):199. https://doi.org/10.1007/s11581-020-03801-4.

    Article  CAS  Google Scholar 

  8. Yao Y, Xu R, Chen M, Cheng X, Zeng S, Li D, Zhou X, Wu X, Yu Y. Encapsulation of SeS2 into nitrogen-doped free-standing carbon nanofiber film enabling long cycle life and high energy density K-SeS2 battery. ACS Nano. 2019;13(4):4695. https://doi.org/10.1021/acsnano.9b00980.

    Article  CAS  Google Scholar 

  9. Abouimrane Ali, Dambournet D, Chapman K W, Chupas P J, Weng W, Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J American Chem Soc. 2012;134(10):4505–8. https://doi.org/10.1021/ja211766q.

    Article  CAS  Google Scholar 

  10. Zhang J, Li Z, Lou XW. A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance. Angew Chem Int Ed. 2017;56(45):14107. https://doi.org/10.1002/anie.201708105.

    Article  CAS  Google Scholar 

  11. Li X, Liang J, Luo J, Wang C, Li X, Sun Q, Li R, Zhang L, Yang R, Lu S, Huang H, Sun X. High-performance Li-SeSx all-solid-state lithium batteries. Adv Mater. 2019;31(17):1808100. https://doi.org/10.1002/adma.201808100.

    Article  CAS  Google Scholar 

  12. Li Z, Zhang J, Lu Y, Lou XW. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Sci Adv. 2018;4(6):1687. https://doi.org/10.1126/sciadv.aat16.

    Article  Google Scholar 

  13. Li X, Wang C, Cao Y, Wang G. Functional MXenes materials: progress of their applications. Chemistry-An Asian Journal. 2018;13(19):2742. https://doi.org/10.1002/asia.201800543.

    Article  CAS  Google Scholar 

  14. Aslam M, Niu Y, Xu M. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv Energy Mater. 2021;11(2):2000681. https://doi.org/10.1002/aenm.202000681.

    Article  CAS  Google Scholar 

  15. Dong Y, Zheng S, Qin J, Zhao X, Shi H, Wang X, Chen J, Wu ZS. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano. 2018;12(3):2381. https://doi.org/10.1021/acsnano.7b07672.

    Article  CAS  Google Scholar 

  16. Cengiz E, Erdol Z, Sakar B, Aslan A, Ata A, Ozturk O, Demir-Cakan R. Investigation of the effect of using Al2O3-Nafion barrier on room temperature Na-S batteries. J Phys Chem C. 2017;121(28):15120. https://doi.org/10.1021/acs.jpcc.7b04711.

    Article  CAS  Google Scholar 

  17. Yang Q, Yang T, Gao W, Qi Y, Guo B, Zhong W, Jiang J, Xu M. An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries. Inorg Chem Front. 2020;7(22):4396. https://doi.org/10.1039/D0QI00939C.

    Article  CAS  Google Scholar 

  18. Qiu ZM, Bai Y, Gao YD, Liu CL, Ru Y, Pi YC, Zhang YZ, Luo YS, Pang H. MXenes nanocomposites for energy storage and conversion. Rare Met. 2022;41(4):1101. https://doi.org/10.1007/s12598-021-01876-0.

    Article  CAS  Google Scholar 

  19. Chen JZ, Chen MF, Zhou WJ, Xu XW, Liu B, Zhang WQ, Wong CP. Simplified synthesis of fluoride-free Ti3C2Tx via electrochemical etching toward high-performance electrochemical capacitors. ACS Nano. 2022;16(2):2461. https://doi.org/10.1021/acsnano.1c09004.

    Article  CAS  Google Scholar 

  20. Ma J, Gao L, Li S, Zeng Z, Zhang L, Xie J. Dual play of chitin derived N-doped carbon nanosheets enabling high performance Na-SeS2 half/full cells. Batteries Supercaps. 2020;3(2):165. https://doi.org/10.1002/batt.201900159.

    Article  CAS  Google Scholar 

  21. Sun F, Cheng H, Chen J, Zheng N, Li Y, Shi J. Heteroatomic SenS8-n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high performance lithium batteries. ACS Nano. 2016;10(9):8289. https://doi.org/10.1021/acsnano.6b02315.

    Article  CAS  Google Scholar 

  22. Wang HQ, Zhao YX, Gou L, Wang LY, Wang M, Li Y, Hu SL. Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage. Rare Met. 2022;41(5):1626. https://doi.org/10.1007/s12598-021-01895-x.

    Article  CAS  Google Scholar 

  23. Chen JZ, Chen H, Chen MF, Zhou WJ, Tian QH, Wong CP. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chem Eng J. 2022;428:131380. https://doi.org/10.1016/j.cej.2021.131380.

    Article  CAS  Google Scholar 

  24. Yang T, Qi Y, Zhong W, Tao M, Guo B, Wu Y, Bao SJ, Xu M. A strategy for polysulfides/polyselenides protection based on Co9S8@SiO2/C host in Na-SeS2 batteries. Adv Funct Mater. 2021;31(2):2001952. https://doi.org/10.1002/adfm.202001952.

    Article  CAS  Google Scholar 

  25. Dong W, Chen H, Xia F, Yu W, Song J, Wu S, Deng Z, Hu Z, Tawfique H, Li Y, Wang H, Chen L, Su BL. Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na–Se batteries. Journal of Materials Chemistry A. 2018;6(45):22790–7. https://doi.org/10.1039/C8TA07662F.

    Article  CAS  Google Scholar 

  26. Du W, Xu Q, Zhan R, Zhang Y, Luo Y, Xu M. Synthesis of hollow porous carbon microspheres and their application to room-temperature Na-S batteries. Mater Lett. 2018;221:66. https://doi.org/10.1016/j.matlet.2018.03.090.

    Article  CAS  Google Scholar 

  27. Yao Yu, Zeng L, Shuhe Hu, Jiang Yu, Yuan B, Yan Yu. Binding S0.6Se0.4 in 1D carbon nanofiber with C-S bonding for high-performance flexible Li-S batteries and Na-S batteries. Small. 2017;13(19):1603513. https://doi.org/10.1002/smll.201603513.

    Article  CAS  Google Scholar 

  28. Lu Q, Wang X, Cao J, Chen C, Chen K, Zhao Z, Niu Z, Chen J. Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries. Energy Storage Mater. 2017;8:77. https://doi.org/10.1016/j.ensm.2017.05.001.

    Article  Google Scholar 

  29. Deng Y, Gong L, Ahmed H, Pan Y, Cheng X, Zhu S, Zhang H. N-doped interconnected carbon aerogels as an efficient SeS2 host for long life Na-SeS2 batteries. Nano Res. 2020;13(4):967–74. https://doi.org/10.1007/s12274-020-2726-8.

    Article  CAS  Google Scholar 

  30. Zhang W, Wang H, Zhang N, Liu H, Chen Z, Zhang L, Guo S, Li D, Xu J. One-step in situ preparation of polymeric selenium sulfide composite as a cathode material for enhanced sodium/potassium storage. ACS Appl Mater Interfaces. 2019;11(33):29807. https://doi.org/10.1021/acsami.9b07540.

    Article  CAS  Google Scholar 

  31. Xu GL, Ma T, Sun CJ, Luo C, Cheng L, Ren Y, Heald SM, Wang C, Curtiss L, Wen J, Miller DJ, Li T, Zou X, Petkov V, Chen Z, Amine K. Insight into the capacity fading mechanism of amorphous Se2S5 confined in micro/mesoporous carbon matrix in ether-based electrolytes. Nano Lett. 2016;16(4):2663. https://doi.org/10.1021/acs.nanolett.6b00318.

    Article  CAS  Google Scholar 

  32. Goldbach A, Iton L, Grimsditch M, Saboungi ML. The formation of Se2-: a new resonance raman feature in the photochemistry of zeolite-encapsulated selenium. J Am Chem Soc. 1996;118(8):2004. https://doi.org/10.1021/ja9531788.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22179109 and 22005251), Chongqing Natural Science Foundation (No. cstc2020jcyj-zdxmX0010), Central University Fundamental Research Funds (No. SWU-KR22002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ruo Qi or Mao-Wen Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1314 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, QJ., Zhao, J., Gao, W. et al. Reasonable suppression of polysulfides/polyselenides shuttle based on MXene in Na-SeS2 batteries. Rare Met. 42, 1594–1602 (2023). https://doi.org/10.1007/s12598-022-02197-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02197-6

Keywords

Navigation