Skip to main content
Log in

Pd-modified SmFeO3 with hollow tubular structure under light shows extremely high acetone gas sensitivity

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Currently, SmFeO3-based sensors are an effective platform for detecting acetone gas. However, they require high operating temperatures, which increases energy consumption and safety hazards, and their response is low when the gas concentration is at 10–9 (PPB), which cannot meet the requirements of using exhaled breath to pre-diagnose diabetes. Herein, Pd–SmFeO3 hollow nanotubes with an extremely high specific surface area and porosity were synthesized by electrospinning. After Pd doping, the specific surface area improved by more than two times, and the acetone response improved by more than three times. In addition, the response further improved by more than 1.5 times, and the optimum operating temperature reduced by 100 °C under light irradiation. Moreover, the relative humidity adaptability, long-term stability, and selectivity of the material were significantly improved after Pd doping or light irradiation. Finally, the acetone concentration in a person’s exhaled breath was detected by a Pd-SmFeO3-based gas sensor, and the error was less than 10% compared to that obtained by gas chromatography–mass spectrometry method.

Graphical abstract

摘要

目前,基于SmFeO3的传感器是一种有效的丙酮气体检测平台。然而,它们需要较高的操作温度,这会增加能源消耗和安全隐患,当丙酮气体浓度在10-9级别时,响应较低,不能满足利用呼出气来预诊断糖尿病的要求。本文通过静电纺丝法合成了具有极高比表面积和孔隙率的Pd-SmFeO3空心纳米管。材料的比表面积提高了2倍以上,对丙酮气体的响应提高了3倍以上。在光照射下,响应进一步提高1.5倍以上,最佳工作温度降低100 ℃。此外,Pd掺杂或光照后材料的相对湿度适应性、长期稳定性和选择性均显著提高。最后,采用基于Pd-SmFeO3的气体传感器检测人呼出气体中的丙酮浓度,与气相色谱-质谱法相比,误差小于10%。本研究表明,Pd掺杂和光照射是提高材料气体灵敏度的两种有效方法,且利用丙酮气体传感器对糖尿病进行预诊断是可行和有效的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yan H, Zhou YG. Electrical sensing of volatile organic compounds in exhaled breath for disease diagnosis. Curr Opin Electrochem. 2022;33:100922. https://doi.org/10.1016/j.coelec.2021.100922.

    Article  CAS  Google Scholar 

  2. Liu W, Gu D, Zhang JW, Li XG, Rumyantseva MN, Gaskov AM. ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection. Rare Met. 2021;40(6):1632. https://doi.org/10.1007/s12598-020-01564-5.

    Article  CAS  Google Scholar 

  3. Li Y, Lu YL, Wu KD, Zhang DZ, Debliquy M, Zhang C. Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. Rare Met. 2021;40(6):1477. https://doi.org/10.1007/s12598-020-01557-4.

    Article  CAS  Google Scholar 

  4. Hwang SI, Chen HY, Fenk C, Rothfuss MA, Bocan KN, Franconi NG, Morgan GJ, White DL, Burkert SC, Ellis JE, Vinay ML, Rometo DA, Finegold DN, Sejdic E, Cho SK, Star A. Breath acetone sensing based on single-walled carbon nanotube-titanium dioxide hybrids enabled by a custom-built dehumidifier. ACS Sensors. 2021;6:871. https://doi.org/10.1021/acssensors.0c01973.

    Article  CAS  Google Scholar 

  5. Jiang L, Lv S, Tang W, Zhao L, Wang C, Wang J, Wang T, Guo X, Liu F, Wang C, Sun P, Zhang C, Zheng J, Lu G. YSZ-based acetone sensor using a Cd2SnO4 sensing electrode for exhaled breath detection in medical diagnosis. Sens Actuators B Chem. 2021;345:130321. https://doi.org/10.1016/j.snb.2021.130321.

    Article  CAS  Google Scholar 

  6. Lyu L, Xie Q, Yang Y, Wang R, Cen W, Luo S, Yang W, Gao Y, Xiao Q, Zou P, Yang Y. A novel CeO2 hollow-shell sensor constructed for high sensitivity of acetone gas detection. Appl Surf Sci. 2022;571:151337. https://doi.org/10.1016/j.apsusc.2021.151337.

    Article  CAS  Google Scholar 

  7. Chen XY, Wang XZ, Liu FJ, Zhang GS, Song XJ, Tian J, Cui HZ. Fabrication of porous Zn2TiO4–ZnO microtubes and analysis of their acetone gas sensing properties. Rare Met. 2021;40(6):1528. https://doi.org/10.1007/s12598-020-01518-x.

    Article  CAS  Google Scholar 

  8. Zhang WH, Ding SJ, Zhang QS, Yi H, Liu ZX, Shi ML, Guan RF, Yue L. Rare earth element-doped porous In2O3 nanosheets for enhanced gas-sensing performance. Rare Met. 2021;40(6):1662. https://doi.org/10.1007/s12598-020-01607-x.

    Article  CAS  Google Scholar 

  9. Baharuddin AA, Ang BC, Haseeb ASMA, Wong YC, Wong YH. Advances in chemiresistive sensors for acetone gas detection. Mater Sci Semicond Process. 2019;103:104616. https://doi.org/10.1016/j.mssp.2019.104616.

    Article  CAS  Google Scholar 

  10. Deng C, Zhang J, Yu X, Zhang W, Zhang X. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B. 2004;810:269. https://doi.org/10.1016/j.jchromb.2004.08.013.

    Article  CAS  Google Scholar 

  11. Zhang Z, Wen Z, Ye Z, Zhu L. Gas sensors based on ultrathin porous Co3O4 nanosheets to detect acetone at low temperature. RSC Adv. 2015;5:59976. https://doi.org/10.1039/c5ra08536e.

    Article  CAS  Google Scholar 

  12. Zhang D, Yang Z, Yu S, Mi Q, Pan Q. Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coord Chem Rev. 2020;413:213272. https://doi.org/10.1016/j.ccr.2020.213272.

    Article  CAS  Google Scholar 

  13. Zhang C, Li L, Hou L, Chen W. Fabrication of Co3O4 nanowires assembled on the surface of hollow carbon spheres for acetone gas sensing. Sens Actuators B Chem. 2019;291:130. https://doi.org/10.1016/j.snb.2019.04.064.

    Article  CAS  Google Scholar 

  14. Zhang D, Yang Z, Li P, Pang M, Xue Q. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy. 2019;65:103974. https://doi.org/10.1016/j.nanoen.2019.103974.

    Article  CAS  Google Scholar 

  15. Zhang D, Yang Y, Xu Z, Wang D, Du C. An eco-friendly gelatin based triboelectric nanogenerator for a self-powered PANI nanorod/NiCo2O4 nanosphere ammonia gas sensor. J Mater Chem A. 2022;10:10935. https://doi.org/10.1039/D2TA01788A.

    Article  CAS  Google Scholar 

  16. Li P, Zhang Z, Zhuang Z, Guo J, Fang Z, Fereja SL, Chen W. Pd-doping-induced oxygen vacancies in one-dimensional tungsten oxide nanowires for enhanced acetone gas sensing. Anal Chem. 2021;93:7465. https://doi.org/10.1021/acs.analchem.1c00568.

    Article  CAS  Google Scholar 

  17. Zhang D, Pan W, Zhou L, Yu S. Room-temperature benzene sensing with Au-doped ZnO nanorods/exfoliated WSe2 nanosheets and density functional theory simulations. ACS Appl Mater Interfaces. 2021;13:33392. https://doi.org/10.1021/acsami.1c03884.

    Article  CAS  Google Scholar 

  18. Yu S, Zhang D, Zhang Y, Pan W, Meteku BE, Zhang F, Zeng J. Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures. Nanoscale. 2020;12:18815. https://doi.org/10.1039/D0NR05530A.

    Article  CAS  Google Scholar 

  19. Liu X, Hu J, Cheng B, Qin H, Jiang M. Acetone gas sensing properties of SmFe1−xMgxO3 perovskite oxides. Sensors Actuators B Chem. 2008;134:483. https://doi.org/10.1016/j.snb.2008.05.024.

    Article  CAS  Google Scholar 

  20. Lv L, Wang Y, Cheng P, Zhang Y, Zhang Y, Lei Z, Xu L, Weng Z. Production of MFe2O4 (M = Zn, Ni, Cu, Co and Mn) multiple cavities microspheres with salt template to assemble a high-performance acetone gas sensor. J Alloys Compd. 2022;904:164054. https://doi.org/10.1016/j.jallcom.2022.164054.

    Article  CAS  Google Scholar 

  21. Ma L, Ma SY, Shen XF, Wang TT, Jiang XH, Chen Q, Qiang Z, Yang HM, Chen H. PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sens Actuators B Chem. 2018;255:2546. https://doi.org/10.1016/j.snb.2017.09.060.

    Article  CAS  Google Scholar 

  22. Zhang HJ, Liu LZ, Zhang XR, Zhang S, Meng FN. Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor. J Alloys Compd. 2019;788:1103. https://doi.org/10.1016/j.jallcom.2019.03.009.

    Article  CAS  Google Scholar 

  23. Wu Z, Zhang R, Zhao M, Fang S, Han Z, Hu J, Wang K. Effect of Pd doping on the acetone-sensing properties of NdFeO3. Int J Miner Metall Mater. 2012;19:141. https://doi.org/10.1007/s12613-012-0529-y.

    Article  CAS  Google Scholar 

  24. Hanh NH, Van DL, Hung CM, Xuan CT, Van DN, Hoa ND. High-performance acetone gas sensor based on Pt–Zn2SnO4 hollow octahedra for diabetic diagnosis. J Alloys Compd. 2021;886:161284. https://doi.org/10.1016/j.jallcom.2021.161284.

    Article  CAS  Google Scholar 

  25. Zhang P, Qin H, Lv W, Zhang H, Hu J. Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations. Sens Actuators B Chem. 2017;246:9. https://doi.org/10.1016/j.snb.2017.01.096.

    Article  CAS  Google Scholar 

  26. Yang M, Huo L, Zhao H, Gao S, Rong Z. Electrical properties and acetone-sensing characteristics of LaNi1−xTixO3 perovskite system prepared by amorphous citrate decomposition. Sens Actuators B Chem. 2009;143:111. https://doi.org/10.1016/j.snb.2009.09.003.

    Article  CAS  Google Scholar 

  27. Zhang G, Song XZ, Wang XF, Liu N, Li X, Wei Z, Qian G, Wang Z, Yu S, Tan Z. LnFeO3 (Ln=La, Nd, Sm) derived from bimetallic organic frameworks for gas sensor. J Alloys Compd. 2022;902:163803. https://doi.org/10.1016/j.jallcom.2022.163803.

    Article  CAS  Google Scholar 

  28. Chen T, Zhou Z, Wang Y. Surfactant CATB-assisted generation and gas-sensing characteristics of LnFeO3 (Ln = La, Sm, Eu) materials. Sens Actuators B Chem. 2009;143:124. https://doi.org/10.1016/j.snb.2009.09.031.

    Article  CAS  Google Scholar 

  29. Li F, Lv Q, Gao L, Zhong X, Zhou J, Gao X. Ultra-sensitive Ag-LaFeO3 for selective detection of ethanol. J Mater Sci. 2021;56:15061. https://doi.org/10.1007/s10853-021-06268-4.

    Article  CAS  Google Scholar 

  30. Ma Z, Yang K, Xiao C, Jia L. C-doped LaFeO3 porous nanostructures for highly selective detection of formaldehyde. Sens Actuators B Chem. 2021;347:130550. https://doi.org/10.1016/j.snb.2021.130550.

    Article  CAS  Google Scholar 

  31. Hu J, Chen X, Zhang Y. Batch fabrication of formaldehyde sensors based on LaFeO3 thin film with ppb-level detection limit. Sens Actuators B Chem. 2021;349:130738. https://doi.org/10.1016/j.snb.2021.130738.

    Article  CAS  Google Scholar 

  32. Sukee A, Alharbi AA, Staerz A, Wisitsoraat A, Liewhiran C, Weimar U, Barsan N. Effect of AgO loading on flame-made LaFeO3 p-type semiconductor nanoparticles to acetylene sensing. Sensors Actuators B Chem. 2020;312:127990. https://doi.org/10.1016/j.snb.2020.127990.

    Article  CAS  Google Scholar 

  33. Shingange K, Swart H, Mhlongo GH. Ultrafast detection of low acetone concentration displayed by Au-loaded LaFeO3 nanobelts owing to synergetic effects of porous 1D morphology and catalytic activity of Au nanoparticles. ACS Omega. 2019;4:19018. https://doi.org/10.1021/acsomega.9b01989.

    Article  CAS  Google Scholar 

  34. Xiangfeng C, Siciliano P. CH3SH-sensing characteristics of LaFeO3 thick-film prepared by co-precipitation method. Sens Actuators B Chem. 2003;94:197. https://doi.org/10.1016/S0925-4005(03)00340-X.

    Article  CAS  Google Scholar 

  35. Song P, Zhang H, Han D, Li J, Yang Z, Wang Q. Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties. Sens Actuators B Chem. 2014;196:140. https://doi.org/10.1016/j.snb.2014.02.006.

    Article  CAS  Google Scholar 

  36. Wang X, Qin H, Pei J, Chen Y, Li L, Xie J, Hu J. Sensing performances to low concentration acetone for palladium doped LaFeO3 sensors. J Rare Earths. 2016;34:704. https://doi.org/10.1016/S1002-0721(16)60082-0.

    Article  CAS  Google Scholar 

  37. Xiaofeng W, Ma W, Sun K, Hu J, Qin H. Nanocrystalline Gd1–xCaxFeO3 sensors for detection of methanol gas. J Rare Earths. 2017;35:690. https://doi.org/10.1016/S1002-0721(17)60965-7.

    Article  Google Scholar 

  38. Zhang L, Qin H, Song P, Hu J, Jiang M. Electric properties and acetone-sensing characteristics of La1−xPbxFeO3 perovskite system. Mater Chem Phys. 2006;98:358. https://doi.org/10.1016/j.matchemphys.2005.09.041.

    Article  CAS  Google Scholar 

  39. Addabbo T, Bertocci F, Fort A, Gregorkiewitz M, Mugnaini M, Spinicci R, Vignoli V. Gas sensing properties and modeling of YCoO3 based perovskite materials. Sensors Actuators B Chem. 2015;221:1137. https://doi.org/10.1016/j.snb.2015.07.079.

    Article  CAS  Google Scholar 

  40. Cerdà J, Arbiol J, Dezanneau G, Diaz R, Morante JR. Perovskite-type BaSnO3 powders for high temperature gas sensor applications. Sens Actuators B Chem. 2002;84:21. https://doi.org/10.1016/S0925-4005(02)00005-9.

    Article  Google Scholar 

  41. Balamurugan C, Lee DW. Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection. Sens Actuators B Chem. 2015;221:857. https://doi.org/10.1016/j.snb.2015.07.018.

    Article  CAS  Google Scholar 

  42. Sheng H, Ma S, Han T, Yun P, Yang T, Ren J. A highly sensitivity and anti-humidity gas sensor for ethanol detection with NdFeO3 nano-coral granules. Vacuum. 2022;195:110642. https://doi.org/10.1016/j.vacuum.2021.110642.

    Article  CAS  Google Scholar 

  43. Song Y, Zhang Y, Ma M, Ren J, Liu C, Tan J. Visible light-assisted formaldehyde sensor based on HoFeO3 nanoparticles with sub-ppm detection limit. Ceram Int. 2020;46:16337. https://doi.org/10.1016/j.ceramint.2020.03.191.

    Article  CAS  Google Scholar 

  44. Jiang L, Xue K, Chen Z, Cui Q, Xu S. High performance of gas sensor based on Bi-doped ZnSnO3/CuO nanocomposites for acetone. Microporous Mesoporous Mater. 2022;329:111532. https://doi.org/10.1016/j.micromeso.2021.111532.

    Article  CAS  Google Scholar 

  45. Yin Y, Shen Y, Zhou P, Lu R, Li A, Zhao S, Liu W, Wei D, Wei K. Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor. Appl Surf Sci. 2020;509:145335. https://doi.org/10.1016/j.apsusc.2020.145335.

    Article  CAS  Google Scholar 

  46. Huang HT, Zhang WL, Zhang XD, Guo X. NO2 sensing properties of SmFeO3 porous hollow microspheres. Sens Actuators B Chem. 2018;265:443. https://doi.org/10.1016/j.snb.2018.03.073.

    Article  CAS  Google Scholar 

  47. Gaiardo A, Zonta G, Gherardi S, Malagù C, Fabbri B, Valt M, Vanzetti L, Landini N, Casotti D, Cruciani G, Della Ciana M, Guidi V. Nanostructured SmFeO3 gas sensors: investigation of the gas sensing performance reproducibility for colorectal cancer screening. Sensors. 2020;20:5910. https://doi.org/10.3390/s20205910.

    Article  CAS  Google Scholar 

  48. Hosoya Y, Itagaki Y, Aono H, Sadaoka Y. Ozone detection in air using SmFeO3 gas sensor. Sens Actuators B Chem. 2005;108:198. https://doi.org/10.1016/j.snb.2004.10.059.

    Article  CAS  Google Scholar 

  49. Tomoda M, Okano S, Itagaki Y, Aono H, Sadaoka Y. Air quality prediction by using semiconducting gas sensor with newly fabricated SmFeO3 film. Sens Actuators B Chem. 2004;97:190. https://doi.org/10.1016/j.snb.2003.08.013.

    Article  CAS  Google Scholar 

  50. Han T, Ma SY, Xu XL, Xu XH, Pei ST, Tie Y, Cao PF, Liu WW, Wang BJ, Zhang R, Zhang JL. Rough SmFeO3 nanofibers as an optimization ethylene glycol gas sensor prepared by electrospinning. Mater Lett. 2020;268:127575. https://doi.org/10.1016/j.matlet.2020.127575.

    Article  CAS  Google Scholar 

  51. Kim S, Park S, Park S, Lee C. Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B Chem. 2015;209:180. https://doi.org/10.1016/j.snb.2014.11.106.

    Article  CAS  Google Scholar 

  52. Wang C, Liu J, Yang Q, Sun P, Gao Y, Liu F, Zheng J, Lu G. Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens Actuators B Chem. 2015;220:59. https://doi.org/10.1016/j.snb.2015.05.037.

    Article  CAS  Google Scholar 

  53. Jin WX, Ma SY, Sun AM, Luo J, Cheng L, Li WQ, Tie ZZ, Jiang XH, Wang TT. Synthesis of hierarchical SnO2 nanoflowers and their high gas-sensing properties. Mater Lett. 2015;143:283. https://doi.org/10.1016/j.matlet.2014.12.137.

    Article  CAS  Google Scholar 

  54. Mishra RK, Kushwaha A, Sahay PP. Cr-induced modifications in the structural, photoluminescence and acetone-sensing behaviour of hydrothermally synthesised SnO2 nanoparticles. J Exp Nanosci. 2015;10:1042. https://doi.org/10.1080/17458080.2014.952685.

    Article  CAS  Google Scholar 

  55. Bhowmik B, Hazra A, Dutta K, Bhattacharyya P. Repeatability and stability of room-temperature acetone sensor based on TiO2 nanotubes: influence of stoichiometry variation. IEEE Trans Device Mater Reliab. 2014;14:961. https://doi.org/10.1109/TDMR.2014.2347376.

    Article  CAS  Google Scholar 

  56. Epifani M, Comini E, Díaz R, Genç A, Andreu T, Siciliano P, Morante JR. Acetone sensors based on TiO2 nanocrystals modified with tungsten oxide species. J Alloys Compd. 2016;665:345. https://doi.org/10.1016/j.jallcom.2016.01.077.

    Article  CAS  Google Scholar 

  57. Guo L, Shen Z, Ma C, Ma C, Wang J, Yuan T. Gas sensor based on MOFs-derived Au-loaded SnO2 nanosheets for enhanced acetone detection. J Alloys Compd. 2022;906:164375. https://doi.org/10.1016/j.jallcom.2022.164375.

    Article  CAS  Google Scholar 

  58. Fan X, Xu Y, Ma C, He W. In-situ growth of Co3O4 nanoparticles based on electrospray for an acetone gas sensor. J Alloys Compd. 2021;854:157234. https://doi.org/10.1016/j.jallcom.2020.157234.

    Article  CAS  Google Scholar 

  59. Chen L, Song Y, Liu W, Dong H, Wang D, Liu J, Liu Q, Chen X. MOF-based nanoscale Pt catalyst decorated SnO2 porous nanofibers for acetone gas detection. J Alloys Compd. 2022;893:162322. https://doi.org/10.1016/j.jallcom.2021.162322.

    Article  CAS  Google Scholar 

  60. Zhu H, Haidry AA, Wang Z, Ji Y. Improved acetone sensing characteristics of TiO2 nanobelts with Ag modification. J Alloys Compd. 2021;887:161312. https://doi.org/10.1016/j.jallcom.2021.161312.

    Article  CAS  Google Scholar 

  61. Liu G, Zhu L, Yu Y, Qiu M, Gao H, Chen D. WO3 nanoplates for sensitive and selective detections of both acetone and NH3 gases at different operating temperatures. J Alloys Compd. 2021;858:157638. https://doi.org/10.1016/j.jallcom.2020.157638.

    Article  CAS  Google Scholar 

  62. Yang M, Zhang S, Qu F, Gong S, Wang C, Qiu L, Yang M, Cheng W. High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles. J Alloys Compd. 2019;797:246. https://doi.org/10.1016/j.jallcom.2019.05.101.

    Article  CAS  Google Scholar 

  63. Zhu Z, Li Z, Xiong X, Hu X, Wang X, Li N, Jin T, Chen Y. ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing. J Alloys Compd. 2022;906:164316. https://doi.org/10.1016/j.jallcom.2022.164316.

    Article  CAS  Google Scholar 

  64. Yuan Z, Feng Z, Kong L, Zhan J, Ma X. Simple synthesis of porous ZnO nanoplates hyper-doped with low concentration of Pt for efficient acetone sensing. J Alloys Compd. 2021;865:158890. https://doi.org/10.1016/j.jallcom.2021.158890.

    Article  CAS  Google Scholar 

  65. Liu X, Ji H, Gu Y, Xu M. Preparation and acetone sensitive characteristics of nano-LaFeO3 semiconductor thin films by polymerization complex method. Mater Sci Eng B. 2006;133:98. https://doi.org/10.1016/j.mseb.2006.06.027.

    Article  CAS  Google Scholar 

  66. Pei S, Ma S, Xu X, Xu X, Almamoun O. Modulated PrFeO3 by doping Sm3+ for enhanced acetone sensing properties. J Alloys Compd. 2021;856:158274. https://doi.org/10.1016/j.jallcom.2020.158274.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Shandong Natural Science Foundation (No. ZR2021QE265), the Fundamental Research Funds of Taishan University (No. Y–01–2020015), the National Natural Science Foundation of China (Nos. 61574098 and 61204051), Shandong Province Key Research and Development Program (No. 2019GGX101016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Zhang or Jing Xiao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1392 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xiao, J., Chen, J. et al. Pd-modified SmFeO3 with hollow tubular structure under light shows extremely high acetone gas sensitivity. Rare Met. 42, 545–557 (2023). https://doi.org/10.1007/s12598-022-02192-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02192-x

Keywords

Navigation