Skip to main content
Log in

Realizing ultra-low thermal conductivity by strong synergy of asymmetric geometry and electronic structure in boron nitride and arsenide

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The design of novel devices with specific technical interests through modulating structural properties and bonding characteristics promotes the vigorous development of materials informatics. Boron arsenide and boron nitride, as remarkably high thermal conductivity (κ) materials, are unfavorable for thermal insulation applications as well as thermoelectric devices. In this study, based on first-principles calculations, we identify a group of novel borides with ultra-low κ, i.e., g-B3X5 (X = N, P, and As). The κ of g-B3N5, g-B3P5, and g-B3As5 are 21.08, 2.50, and 1.85 W·m−1·K−1, respectively, which are boron nitride and boron arsenide systems with the lowest κ reported so far. The ultra-low κ is attributed to the synergy effect of electronics (lone-pair electrons) and geometry (buckling structures) on thermal transport. The discovery of the ultra-low κ of boron nitride and boron arsenide systems can well fill the gaps in applications of thermal insulation and thermoelectric devices.

Graphical abstract

摘要

通过调节结构特征和键合特性来设计具有特定功能的新型电子器件材料, 促进了材料信息学的蓬勃发展。作为高热导率 (κ) 材料, 砷化硼和氮化硼体系不利于隔热,绝热以及热电器件等应用。 基于第一性原理计算, 我们报道了一组具有超低热导率的新型硼化物, 即 g-B3X5(X = N、P 和 As) 。 g-B3N5、g-B3P5和g-B3As5的热导率分别为21.08、2.50和1.85 W m−1 K−1, 是迄今为止报道具有最低热导率的氮化硼和砷化硼化合物。 超低热导率归因于电子学 (孤对电子) 和几何学 (屈曲结构) 对热传输的协同抑制作用,并且它们的发现可以很好地填补隔热和热电器件等应用中的空白。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skoug EJ, Morelli DT. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. Phys Rev Lett. 2011;107(23): 235901. https://doi.org/10.1103/PhysRevLett.107.235901.

    Article  CAS  Google Scholar 

  2. Morelli DT, Jovovic V, Heremans JP. Intrinsically minimal thermal conductivity in cubic I−V−VI2 semiconductors. Phys Rev Lett. 2008;101(3): 035901. https://doi.org/10.1103/PhysRevLett.101.035901.

    Article  CAS  Google Scholar 

  3. Lee S, Esfarjani K, Luo T, Zhou J, Tian Z, Chen G. Resonant bonding leads to low lattice thermal conductivity. Nat Commun. 2014;5(1):3525. https://doi.org/10.1038/ncomms4525.

    Article  Google Scholar 

  4. Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M. Resonant bonding in crystalline phase-change materials. Nat Mater. 2008;7(8):653–8. https://doi.org/10.1038/nmat2226.

    Article  CAS  Google Scholar 

  5. Qin G, Zhang X, Yue SY, Qin Z, Wang H, Han Y, Hu M. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Phys Rev B. 2016;94(16): 165445. https://doi.org/10.1103/PhysRevB.94.165445.

    Article  CAS  Google Scholar 

  6. Wu J, Xu J, Prananto D, Shimotani H, Tanabe Y, Heguri S, Tanigaki K. Systematic studies on anharmonicity of rattling phonons in type-I clathrates by low-temperature heat capacity measurements. Phys Rev B. 2014;89(21): 214301. https://doi.org/10.1103/PhysRevB.89.214301.

    Article  CAS  Google Scholar 

  7. Takabatake T, Suekuni K, Nakayama T, Kaneshita E. Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev Mod Phys. 2014;86(2):669. https://doi.org/10.1103/RevModPhys.86.669.

    Article  CAS  Google Scholar 

  8. Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G, Wu H, Chen Y, Zheng L, Gong S, Zhu T, Zhao X, Huang L, He J, Kanatzidis MG, Zhao LD. Multiple converged conduction bands in K2Bi8Se13: a promising thermoelectric material with extremely low thermal conductivity. J Am Chem Soc. 2016;138(50):16364. https://doi.org/10.1021/jacs.6b09568.

    Article  CAS  Google Scholar 

  9. Liu Q, Ouyang T, Qin G, He C, Li J, Zhang C, Tang C, Zhong J. Quasi-bonding driven abnormal isotropic thermal transport in intrinsically anisotropic nanostructure: a case of study of a phosphorus nanotube array. Nanotechnology. 2019;31(9): 095704. https://doi.org/10.1088/1361-6528/ab57b0.

    Article  CAS  Google Scholar 

  10. Shimoni-Livny L, Glusker JP, Bock CW. Lone pair functionality in divalent lead compounds. Inorg Chem. 1998;37(8):1853. https://doi.org/10.1021/ic970909r.

    Article  CAS  Google Scholar 

  11. Egli M, Sarkhel S. Lone pair−aromatic interactions: to stabilize or not to stabilize. Acc Chem Res. 2007;40(3):197. https://doi.org/10.1021/ar068174u.

    Article  CAS  Google Scholar 

  12. Duncan ABF, Pople JA. The structure of some simple molecules with lone pair electrons. Trans Faraday Soc. 1953;49:217. https://doi.org/10.1039/TF9534900217.

    Article  CAS  Google Scholar 

  13. Nielsen MD, Ozolins V, Heremans JP. Lone pair electrons minimize lattice thermal conductivity. Energy Environ Sci. 2013;6(2):570. https://doi.org/10.1039/C2EE23391F.

    Article  CAS  Google Scholar 

  14. Ok KM, Ohishi Y, Mitazono Y, Muta H, Kurosaki K, Yamanaka S. Bi-doped lanthanum molybdate: enhancing the anharmonicity and reducing the thermal conductivity using Bi3+ with lone pair electrons. Ceram Int. 2018;44(13):15833. https://doi.org/10.1016/j.ceramint.2018.05.262.

    Article  CAS  Google Scholar 

  15. Dong Y, Khabibullin AR, Wei K, Salvador JR, Nolas GS, Woods LM. Bournonite PbCuSbS3: stereochemically active lone-pair electrons that induce low thermal conductivity. ChemPhysChem. 2015;16(15):3264. https://doi.org/10.1002/cphc.201500476.

    Article  CAS  Google Scholar 

  16. Wang X, Liebau F. Studies on bond and atomic valences I. Correlation between bond valence and bond angles in SbIII chalcogen compounds: the influence of lone-electron pairs. Acta Crystallogr B Struct Sci. 1996;52(1):7. https://doi.org/10.1107/S0108768195004472.

    Article  Google Scholar 

  17. Wang H, Yu L, Xu J, Wei D, Qin G, Yao Y, Hu M. Intrinsically low lattice thermal conductivity of monolayer hexagonal aluminum nitride (h-AlN) from first-principles: a comparative study with graphene. Int J Therm Sci. 2021;162: 106772. https://doi.org/10.1016/j.ijthermalsci.2020.106772.

    Article  CAS  Google Scholar 

  18. Qin Z, Qin G, Zuo X, Xiong Z, Hu M. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study. Nanoscale. 2017;9(12):4295. https://doi.org/10.1039/C7NR01271C.

    Article  CAS  Google Scholar 

  19. Li S, Yu L, Qi C, Du K, Qin G, Xiong Z. Different effects of Mg and Si doping on the thermal transport of gallium nitride. Front Mater. 2021. https://doi.org/10.3389/fmats.2021.72521.

    Article  Google Scholar 

  20. Yu L, Tian Y, Zheng X, Wang H, Shen C, Qin G. Abnormal enhancement of thermal conductivity by planar structure: a comparative study of graphene-like materials. Int J Therm Sci. 2022;174: 107438. https://doi.org/10.1016/j.ijthermalsci.2021.107438.

    Article  CAS  Google Scholar 

  21. Lindsay L, Broido DA, Reinecke TL. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys Rev Lett. 2013;111(2): 025901. https://doi.org/10.1103/PhysRevLett.111.025901.

    Article  CAS  Google Scholar 

  22. Lou A, Liu QB, Fu HH. Enhanced thermoelectric performance by lone-pair electrons and bond anharmonicity in the two-dimensional Ge2Y2 family of materials with Y = N, P, As, or Sb. Phys Rev B. 2022;105(7): 075431. https://doi.org/10.1103/PhysRevB.105.075431.

    Article  CAS  Google Scholar 

  23. Qin G, Qin Z, Wang H, Hu M. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1/T law. Phys Rev B. 2017;95(19): 195416. https://doi.org/10.1103/PhysRevB.95.195416.

    Article  Google Scholar 

  24. Slack GA. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids. 1973;34(2):321. https://doi.org/10.1016/0022-3697(73)90092-9.

    Article  CAS  Google Scholar 

  25. Qin G, Qin Z, Wang H, Hu M. Lone-pair electrons induced anomalous enhancement of thermal transport in strained planar two-dimensional materials. Nano Energy. 2018;50:425. https://doi.org/10.1016/j.nanoen.2018.05.040.

    Article  CAS  Google Scholar 

  26. Gu X, Yang R. First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. J Appl Phys. 2015;117(2): 025102. https://doi.org/10.1063/1.4905540.

    Article  CAS  Google Scholar 

  27. Chesnut DB. An electron localization function study of the lone pair. J Phys Chem A. 2000;104(49):11644. https://doi.org/10.1021/jp002957u.

    Article  CAS  Google Scholar 

  28. Shen X, Xia Y, Wang G, Zhou F, Ozolins V, Lu X, Wang G, Zhou X. High thermoelectric performance in complex phosphides enabled by stereochemically active lone pair electrons. J Mater Chem A. 2018;6(48):24877. https://doi.org/10.1039/C8TA08448C.

    Article  CAS  Google Scholar 

  29. Wu D, Hu S, Xue H, Hou X, Du H, Xu G, Yuan Y. Protonation and microwave-assisted heating induced excitation of lone-pair electrons in graphitic carbon nitride for increased photocatalytic hydrogen generation. J Mater Chem A. 2019;7(35):20223. https://doi.org/10.1039/C9TA05135J.

    Article  CAS  Google Scholar 

  30. Wang H, Qin G, Qin Z, Li G, Wang Q, Hu M. Lone-pair electrons do not necessarily lead to low lattice thermal conductivity: an exception of two-dimensional penta-CN2. J Phys Chem Lett. 2018;9(10):2474. https://doi.org/10.1021/acs.jpclett.8b00820.

    Article  CAS  Google Scholar 

  31. Zhao Y, Wen J, Peyraut F, Planche MP, Misra S, Lenoir B, Ilavsky J, Liao H, Montavon G. Porous architecture and thermal properties of thermal barrier coatings deposited by suspension plasma spray. Surf Coat Technol. 2020;386: 125462. https://doi.org/10.1016/j.surfcoat.2020.125462.

    Article  CAS  Google Scholar 

  32. Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891. https://doi.org/10.1557/mrs.2012.232.

    Article  CAS  Google Scholar 

  33. Siegrist T, Merkelbach P, Wuttig M. Phase change materials: challenges on the path to a universal storage device. Ann Rev Condens Matter Phys. 2012;3(1):215. https://doi.org/10.1146/annurev-conmatphys-020911-125105.

    Article  CAS  Google Scholar 

  34. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6(11):824. https://doi.org/10.1038/nmat2009.

    Article  CAS  Google Scholar 

  35. Tolborg K, Iversen BB. Chemical bonding origin of the thermoelectric power factor in half-Heusler semiconductors. Chem Mater. 2021. https://doi.org/10.1021/acs.chemmater.1c01409.

    Article  Google Scholar 

  36. Tian F, Song B, Chen X, Ravichandran NK, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu TH, Goni M, Ding Z, Sun J, Gamage GAGU, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt AJ, Chen S, Chu CW, Huang PY, Broido D, Shi L, Chen G, Ren Z. Unusual high thermal conductivity in boron arsenide bulk crystals. Science. 2018;361(6402):582. https://doi.org/10.1126/science.aat7932.

    Article  CAS  Google Scholar 

  37. Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang PY, Cahill DG, Lv B. High thermal conductivity in cubic boron arsenide crystals. Science. 2018;361(6402):579. https://doi.org/10.1126/science.aat8982.

    Article  CAS  Google Scholar 

  38. Kang JS, Li M, Wu H, Nguyen H, Hu Y. Experimental observation of high thermal conductivity in boron arsenide. Science. 2018;361(6402):575. https://doi.org/10.1126/science.aat5522.

    Article  CAS  Google Scholar 

  39. Chen K, Song B, Ravichandran NK, Zheng Q, Chen X, Lee H, Sun H, Li S, Udalamatta Gamage GAG, Tian F, Ding Z, Song Q, Rai A, Wu H, Koirala P, Schmidt AJ, Watanabe K, Lv B, Ren Z, Shi L, Cahill DG, Taniguchi T, Broido D, Chen G. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science. 2020;367(6477):555. https://doi.org/10.1126/science.aaz6149.

    Article  CAS  Google Scholar 

  40. Guo SD. Phonon transport in janus monolayer MoSSe: a first-principles study. Phys Chem Chem Phys. 2018;20(10):7236. https://doi.org/10.1039/C8CP00350E.

    Article  CAS  Google Scholar 

  41. Peng B, Zhang H, Shao H, Xu Y, Zhang X, Zhu H. Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv. 2016;6(7):5767. https://doi.org/10.1039/C5RA19747C.

    Article  CAS  Google Scholar 

  42. Lv X, Yu L, Li F, Gong J, He Y, Chen Z. Penta-MS2 (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson’s ratios and tunable bandgaps as water-splitting photocatalysts. J Mater Chem A. 2021;9(11):6993. https://doi.org/10.1039/D1TA00019E.

    Article  CAS  Google Scholar 

  43. Tao WL, Zhao YQ, Zeng ZY, Chen XR, Geng HY. Anisotropic thermoelectric materials: pentagonal PtM2 (M = S, Se, Te). ACS Appl Mater Interfaces. 2021;13(7):8700. https://doi.org/10.1021/acsami.0c19460.

    Article  CAS  Google Scholar 

  44. Wang N, Gong H, Sun Z, Shen C, Li B, Xiao H, Zu X, Tang D, Yin Z, Wu X, Zhang H, Qiao L. Boosting thermoelectric performance of 2D transition-metal dichalcogenides by complex cluster substitution: the role of octahedral Au6 clusters. ACS Appl Energy Mater. 2021;4(11):12163. https://doi.org/10.1021/acsaem.1c01777.

    Article  CAS  Google Scholar 

  45. Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L. Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv Mater. 2017;29(5):1603756. https://doi.org/10.1002/adma.201603756.

    Article  CAS  Google Scholar 

  46. Zheng G, Jia Y, Gao S, Ke SH. Comparative study of thermal properties of group-VA monolayers with buckled and puckered honeycomb structures. Phys Rev B. 2016;94(15):155448. https://doi.org/10.1103/PhysRevB.94.155448.

    Article  CAS  Google Scholar 

  47. Zeraati M, Allaei SMV, Sarsari IA, Pourfath M, Donadio D. Highly anisotropic thermal conductivity of arsenene: an ab initio study. Phys Rev B. 2016;93(8): 085424. https://doi.org/10.1103/PhysRevB.93.085424.

    Article  CAS  Google Scholar 

  48. Sun Y, Shuai Z, Wang D. Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics. Phys Chem Chem Phys. 2018;20(20):14024. https://doi.org/10.1039/c8cp01840e.

    Article  CAS  Google Scholar 

  49. Tang S, Wu M, Bai S, Luo D, Zhang J, Yang S. Honeycomb-like puckered PbTe monolayer: a promising n-type thermoelectric material with ultralow lattice thermal conductivity. J Alloys Compd. 2022;907: 164439. https://doi.org/10.1016/j.jallcom.2022.164439.

    Article  CAS  Google Scholar 

  50. Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G, Su G. Thermal conductivity of silicene calculated using an optimized Stillinger–Weber potential. Phys Rev B. 2014;89(5): 054310. https://doi.org/10.1103/PhysRevB.89.054310.

    Article  CAS  Google Scholar 

  51. Wang H, Qin G, Li G, Wang Q, Hu M. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence. Phys Chem Chem Phys. 2017;19(20):12882. https://doi.org/10.1039/C7CP00460E.

    Article  CAS  Google Scholar 

  52. Zhou Y, Hu M. Record low thermal conductivity of polycrystalline Si nanowire: breaking the Casimir limit by severe suppression of propagons. Nano Lett. 2016;16(10):6178. https://doi.org/10.1021/acs.nanolett.6b02450.

    Article  CAS  Google Scholar 

  53. Zhu J, Feng T, Mills S, Wang P, Wu X, Zhang L, Pantelides ST, Du X, Wang X. Record-low and anisotropic thermal conductivity of a quasi-one-dimensional bulk ZrTe5 single crystal. ACS Appl Mater Interfaces. 2018;10(47):40740. https://doi.org/10.1021/acsami.8b12504.

    Article  CAS  Google Scholar 

  54. Ding J, Lanigan-Atkins T, Calderón-Cueva M, Banerjee A, Abernathy DL, Said A, Zevalkink A, Delaire O. Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb, Bi)2 thermoelectrics. Sci Adv. 2021;7(21):eabg1449. https://doi.org/10.1126/sciadv.abg1449.

    Article  CAS  Google Scholar 

  55. Agarwal J, Sahoo S, Mohanty S, Nayak SK. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: a review. J Thermoplast Compos Mater. 2020;33(7):978. https://doi.org/10.1177/0892705718815530.

    Article  CAS  Google Scholar 

  56. Song Z, Zhao X. Research on lightweight design of automobile lower arm based on carbon fiber materials. World J Eng Technol. 2017;5(4):730. https://doi.org/10.4236/wjet.2017.54061.

    Article  Google Scholar 

  57. Zhu L, Li N, Childs PRN. Light-weighting in aerospace component and system design. Propuls Power Res. 2018;7(2):103. https://doi.org/10.1016/j.jppr.2018.04.001.

    Article  Google Scholar 

  58. Fetisov KV, Maksimov PV. Topology optimization and laser additive manufacturing in design process of efficiency lightweight aerospace parts. J Phys Conf Ser. 2018;1015:052006. https://doi.org/10.1088/1742-6596/1015/5/052006.

    Article  Google Scholar 

  59. He J, Xia Y, Lin W, Pal K, Zhu Y, Kanatzidis MG, Wolverton C. Accelerated discovery and design of ultralow lattice thermal conductivity materials using chemical bonding principles. Adv Funct Mater. 2022;32(14):2108532. https://doi.org/10.1002/adfm.202108532.

    Article  CAS  Google Scholar 

  60. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49(20):14251. https://doi.org/10.1103/PhysRevB.49.14251.

    Article  CAS  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  62. Monkhorst HJ, Pack JD. Special points for Brillouin–Zone integrations. Phys Rev B. 1976;13(12):5188. https://doi.org/10.1103/PhysRevB.13.5188.

    Article  Google Scholar 

  63. Chaput L, Togo A, Tanaka I, Hug G. Phonon–phonon interactions in transition metals. Phys Rev B. 2011;84(9): 094302. https://doi.org/10.1103/PhysRevB.84.094302.

    Article  CAS  Google Scholar 

  64. Li W, Carrete J, Katcho A, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun. 2014;185(6):1747. https://doi.org/10.1016/j.cpc.2014.02.015.

    Article  CAS  Google Scholar 

  65. Hong Y, Zhang J, Huang X, Zeng XC. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. Nanoscale. 2015;7(44):18716. https://doi.org/10.1039/C5NR03577E.

    Article  CAS  Google Scholar 

  66. Peng B, Zhang D, Zhang H, Shao H, Ni G, Zhu Y, Zhu H. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale. 2017;9(22):7397. https://doi.org/10.1039/C7NR00838D.

    Article  CAS  Google Scholar 

  67. Peng B, Zhang H, Shao H, Xu Y, Ni G, Zhang R, Zhu H. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Phys Rev B. 2016;94(24): 245420. https://doi.org/10.1103/PhysRevB.94.245420.

    Article  Google Scholar 

  68. Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos EJG, Li LH. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci Adv. 2019;5(6):eaav0129. https://doi.org/10.1126/sciadv.aav0129.

    Article  CAS  Google Scholar 

  69. Taheri A, Da Silva C, Amon CH. Phonon thermal transport in β-NX (X= P, As, Sb) monolayers: a first-principles study of the interplay between harmonic and anharmonic phonon properties. Phys Rev B. 2019;99(23):235425. https://doi.org/10.1103/PhysRevB.99.235425.

    Article  CAS  Google Scholar 

  70. Xie H, Hu M, Bao H. Thermal conductivity of silicene from first-principles. Appl Phys Lett. 2014;104(13):131906. https://doi.org/10.1063/1.4870586.

    Article  CAS  Google Scholar 

  71. Yu L, Zhan Y, Wei D, Shen C, Zhang H, Qin Z, Qin G. Multifunctional two-dimensional graphene-like boron nitride allotrope of g-B3N5: a competitor to g-BN? J Alloys Compd. 2022;921:165913. https://doi.org/10.1016/j.jallcom.2022.165913.

    Article  CAS  Google Scholar 

  72. Delaire O, Ma J, Marty K, May AF, McGuire MA, Du MH, Singh DJ, Podlesnyak A, Ehlers G, Lumsden MD, Sales BC. Giant anharmonic phonon scattering in PbTe. Nature Mater. 2011;10(8):614. https://doi.org/10.1038/nmat3035.

    Article  CAS  Google Scholar 

  73. Choudhry U, Yue S, Liao B. Origins of significant reduction of lattice thermal conductivity in graphene allotropes. Phys Rev B. 2019;100(16): 165401. https://doi.org/10.1103/PhysRevB.100.165401.

    Article  CAS  Google Scholar 

  74. Gan Y, Huang Y, Miao N, Zhou J, Sun Z. Novel IV–V–VI semiconductors with ultralow lattice thermal conductivity. J Mater Chem C. 2021;9(12):4189. https://doi.org/10.1039/D1TC00377A.

    Article  CAS  Google Scholar 

  75. Li MS, Mo DC, Lyu SS. Thermoelectric transports in pristine and functionalized boron phosphide monolayers. Sci Rep. 2021;11(1):10030. https://doi.org/10.1038/s41598-021-89579-5.

    Article  CAS  Google Scholar 

  76. Yu H, Li Y, Wei D, Guo G, Feng Z, Ye J, Luo Q, Ma Y, Tang Y, Dai X. Effect of intrinsic defects on the electronic structure and thermoelectricity of two-dimensional boron arsenide. Micro Nanostruct. 2022;165:207188. https://doi.org/10.1016/j.micrna.2022.207188.

    Article  CAS  Google Scholar 

  77. Qi H, Sun Z, Wang N, Qin G, Zhang H, Shen C. Two-dimensional Al2I2Se2: a promising anisotropic thermoelectric material. J Alloys Compd. 2021;876:160191. https://doi.org/10.1016/j.jallcom.2021.160191.

    Article  CAS  Google Scholar 

  78. Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X, Gong S, He J, Zhang Y, Zeng Z, Zhao LD. Origin of low thermal conductivity in SnSe. Phys Rev B. 2016;94(12):125203. https://doi.org/10.1103/PhysRevB.94.125203.

    Article  Google Scholar 

  79. Fan Q, Yang J, Qi H, Yu L, Qin G, Sun Z, Shen C, Wang N. Anisotropic thermal and electrical transport properties induced high thermoelectric performance in an Ir2Cl2O2 monolayer. Phys Chem Chem Phys. 2022;24(18):11268. https://doi.org/10.1039/D1CP04971B.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 52006057, 52006059 and 51906097), the Fundamental Research Funds for the Central Universities (Nos. 531119200237 and 541109010001 531118010490), and the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body at Hunan University (No. 52175011). The numerical calculations in this paper have been done on the supercomputing system of the E.T. Cluster and the National Supercomputing Center in Changsha. Simulations were also performed with computing resources granted by RWTH Aachen University under project bund0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhao Qin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1513 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LF., Xu, JY., Shen, C. et al. Realizing ultra-low thermal conductivity by strong synergy of asymmetric geometry and electronic structure in boron nitride and arsenide. Rare Met. 42, 210–221 (2023). https://doi.org/10.1007/s12598-022-02187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02187-8

Keywords

Navigation