Skip to main content
Log in

A nanoplatform self-assembled by coordination delivers siRNA for lung cancer therapy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The high incidence and mortality of lung cancer have present threaten in front of people all over the world. Researches in clinical trials find that mutations of some genes influence progress of lung cancer directly or indirectly, therefore, some kinds of molecular inhibitors benefit patients in clinical therapy, which helpfully prolong survival time of patients and show great potential in lung cancer therapy. siRNA is a kind of nucleic acid molecules which can silence targeted gene translation through binding to mRNA completely to cure diseases. The delivery of siRNA for cancer therapy mostly can be classified into loading through electrostatic interaction, physical surrounding, and chemically modification. Yet delivering siRNA by coordination has not been reported. This study unprecedently utilizes the coordination between siRNA and Fe2+ to form a self-assembly structure in which doxorobicin (DOX) and human serum albumin (HSA) were used to stabilize the whole nanoplatform followed polyethylenimine (PEI) coating. Through the heat incubation strategy, highly loading efficiency for siRNA and DOX was achieved. This nanoplatform with stability and sustain release of drugs exhibited good lysosome escape, gene silencing effect and cytotoxicity which provided new horizon for co-delivery of siRNA and other molecular or protein drugs.

Graphical abstract

摘要

肺癌的高发病率和高死亡率已经威胁到全世界人民的健康。临床研究发现,某些基因的突变直接或间接影响肺癌的进展,因此,在临床中,某些分子抑制剂可用于治疗,有助于延长患者的生存期,在肺癌治疗中显示出巨大的潜力。 siRNA是一种核酸分子,它可以通过与mRNA完全结合来沉默靶基因的翻译,从而治愈疾病。用于癌症治疗的siRNA的递送主要可分为静电相互作用负载、物理包覆和化学修饰。然而,通过配位递送 siRNA 暂无报道。本研究创新利用 siRNA 和 Fe2+ 之间的配位形成自组装结构,其中 DOX(阿霉素)和 HSA(人血清白蛋白)用于稳定纳米颗粒结构,最后以 PEI(聚乙烯亚胺)包覆。通过热孵育策略,实现了 siRNA 和 DOX 的高负载效率。这种具有药物稳定性和持续释放的纳米平台表现出良好的溶酶体逃逸、基因沉默和细胞毒性作用,为siRNA与其他分子或蛋白质药物的共递送提供了新的方法指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299. https://doi.org/10.1016/S0140-6736(16)30958-8.

    Article  CAS  Google Scholar 

  3. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101. https://doi.org/10.1038/s41392-020-0207-x.

    Article  CAS  Google Scholar 

  4. Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421. https://doi.org/10.1038/s41573-019-0017-4.

    Article  CAS  Google Scholar 

  5. Huang Y, Hong J, Zheng S, Ding Y, Guo S, Zhang H, Zhang X, Du Q, Liang Z. Elimination pathways of systemically delivered siRNA. Mol Ther. 2011;19(2):381. https://doi.org/10.1038/mt.2010.266.

    Article  CAS  Google Scholar 

  6. Li S, Xu S, Liang X, Xue Y, Mei J, Ma Y, Liu Y, Liu Y. Nanotechnology: breaking the current treatment limits of lung cancer. Adv Healthc Mater. 2021;10(12):e2100078. https://doi.org/10.1002/adhm.202100078.

    Article  CAS  Google Scholar 

  7. Liu J, Wang P, Zhang X, Wang L, Wang D, Gu Z, Tang J, Guo M, Cao M, Zhou H, Liu Y, Chen C. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano. 2016;10(4):4587. https://doi.org/10.1021/acsnano.6b00745.

    Article  CAS  Google Scholar 

  8. Zhou H, Hou X, Liu Y, Zhao T, Shang Q, Tang J, Liu J, Wang Y, Wu Q, Luo Z, Wang H, Chen C. Superstable magnetic nanoparticles in conjugation with near-infrared dye as a multimodal theranostic platform. ACS Appl Mater Interfaces. 2016;8(7):4424. https://doi.org/10.1021/acsami.5b11308.

    Article  CAS  Google Scholar 

  9. Liu J, Wang A, Liu S, Yang R, Wang L, Gao F, Zhou H, Yu X, Liu J, Chen C. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew Chem Int Ed Engl. 2021;60(48):25328. https://doi.org/10.1002/anie.202106750.

    Article  CAS  Google Scholar 

  10. Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res. 2021;14(7):2067. https://doi.org/10.1007/s12274-020-3180-3.

    Article  CAS  Google Scholar 

  11. Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair JK, Rajeev KG, Hafez IM, Akinc A, Maier MA, Tracy MA, Cullis PR, Madden TD, Manoharan M, Hope MJ. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 2012;51(34):8529. https://doi.org/10.1002/anie.201203263.

    Article  CAS  Google Scholar 

  12. Kulkarni JA, Darjuan MM, Mercer JE, Chen S, van der Meel R, Thewalt JL, Tam YYC, Cullis PR. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano. 2018;12(5):4787. https://doi.org/10.1021/acsnano.8b01516.

    Article  CAS  Google Scholar 

  13. Zhang X, Goel V, Robbie GJ. Pharmacokinetics of Patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2019;60(5):573. https://doi.org/10.1002/jcph.1553.

    Article  CAS  Google Scholar 

  14. Dindo M, Conter C, Oppici E, Ceccarelli V, Marinucci L, Cellini B. Molecular basis of primary hyperoxaluria: clues to innovative treatments. Urolithiasis. 2019;47(1):67. https://doi.org/10.1007/s00240-018-1089-z.

    Article  CAS  Google Scholar 

  15. Scott LJ, Keam SJ. Lumasiran: first approval. Drugs. 2021;81(2):277. https://doi.org/10.1007/s40265-020-01463-0.

    Article  CAS  Google Scholar 

  16. Dahlman JE, Barnes C, Khan O, Thiriot A, Jhunjunwala S, Shaw TE, Xing Y, Sager HB, Sahay G, Speciner L, Bader A, Bogorad RL, Yin H, Racie T, Dong Y, Jiang S, Seedorf D, Dave A, Sandu KS, Webber MJ, Novobrantseva T, Ruda VM, Lytton-Jean AKR, Levins CG, Kalish B, Mudge DK, Perez M, Abezgauz L, Dutta P, Smith L, Charisse K, Kieran MW, Fitzgerald K, Nahrendorf M, Danino D, Tuder RM, von Andrian UH, Akinc A, Schroeder A, Panigrahy D, Kotelianski V, Langer R, Anderson DG. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol. 2014;9(8):648. https://doi.org/10.1038/nnano.2014.84.

    Article  CAS  Google Scholar 

  17. El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, Alvarez-Erviti L, Sargent IL, Wood MJ. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112. https://doi.org/10.1038/nprot.2012.131.

    Article  CAS  Google Scholar 

  18. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498. https://doi.org/10.1038/nature22341.

    Article  CAS  Google Scholar 

  19. Sun Z, Jiang Y, Stenzel M. Manipulating endogenous exosome biodistribution for therapy. SmartMat. 2021;2(2):127. https://doi.org/10.1002/smm2.1043.

    Article  CAS  Google Scholar 

  20. Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013;46(3):702. https://doi.org/10.1021/ar300028m.

    Article  CAS  Google Scholar 

  21. Lu X, Liu Y, Kong X, Lobie PE, Chen C, Zhu T. Nanotoxicity: a growing need for study in the endocrine system. Small. 2013;9(9–10):1654. https://doi.org/10.1002/smll.201201517.

    Article  CAS  Google Scholar 

  22. He C, Lu K, Liu D, Lin W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc. 2014;136(14):5181. https://doi.org/10.1021/ja4098862.

    Article  CAS  Google Scholar 

  23. Zheng G, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán L. Plasmonic metal-organic frameworks. SmartMat. 2021;2(4):446. https://doi.org/10.1002/smm2.1047.

    Article  CAS  Google Scholar 

  24. Chen Y, Li P, Modica JA, Drout RJ, Farha OK. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J Am Chem Soc. 2018;140(17):5678. https://doi.org/10.1021/jacs.8b02089.

    Article  CAS  Google Scholar 

  25. Ni D, Lin J, Zhang N, Li S, Xue Y, Wang Z, Liu Q, Liu K, Zhang H, Zhao Y, Chen C, Liu Y. Combinational application of metal-organic frameworks-based nanozyme and nucleic acid delivery in cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(3):e1773. https://doi.org/10.1002/wnan.1773.

    Article  CAS  Google Scholar 

  26. Sun W, Liu XY, Ma LL, Lu ZL. Tumor targeting gene vector for visual tracking of Bcl-2 siRNA transfection and anti-tumor therapy. ACS Appl Mater Interfaces. 2020;12(9):10193. https://doi.org/10.1021/acsami.0c00652.

    Article  CAS  Google Scholar 

  27. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101. https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  Google Scholar 

  28. Yu KX, Qiao ZJ, Song WL, Bi S. DNA nanotechnology for multimodal synergistic theranostics. J Anal Test. 2021;5:112. https://doi.org/10.1007/s41664-021-00182-z.

    Article  Google Scholar 

  29. Vaughan HJ, Green JJ, Tzeng SY. Cancer-targeting nanoparticles for combinatorial nucleic acid delivery. Adv Mater. 2020;32(13):e1901081. https://doi.org/10.1002/adma.201901081.

    Article  CAS  Google Scholar 

  30. Cui MR, Gao F, Shu ZY, Ren SK, Zhu D, Chao J. Nucleic acids-based functional nanomaterials for bioimaging. J Anal Test. 2021;5:142. https://doi.org/10.1007/s41664-021-00169-w.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Program for International S and T Cooperation Projects of the Ministry of Science and Technology of China (No. 2018YFE0117200), the National Natural Science Foundation of China (No. 31971318), the Special Project for Research and Development in Key Areas of Guangdong Province (No. 2020B0101020001) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5506 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZY., Mei, J., Ni, DQ. et al. A nanoplatform self-assembled by coordination delivers siRNA for lung cancer therapy. Rare Met. 42, 1483–1493 (2023). https://doi.org/10.1007/s12598-022-02185-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02185-w

Keywords

Navigation