Skip to main content

Advertisement

Log in

Microfluidic assembly of WO3/MoS2 Z-scheme heterojunction as tandem photocatalyst for nitrobenzene hydrogenation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Heterojunction-based photocatalyst plays an important role in the various heterogeneous catalyses. Z-scheme photocatalytic systems with two semiconductor materials are suitable for harvesting solar energy, while the advanced nanostructuring tools for the fabrication of Z-scheme heterojunction are limited. Here, WO3/MoS2 (W/M0.2) heterojunction composites were constructed in a microfluidic system with enhanced assembly efficiency, and the photocatalytic performance has been investigated using X-ray photoelectron spectroscopy (XPS), Mott–Schottky (M–S) analysis and gas chromatograph-mass spectrometer (GC–MS). In addition, in the reduction of nitrobenzene, the photogenerated hole (h+) oxidation of formic acid (HCOOH) provides the hydrogen source and the deposited Pd nanoparticles are enriched with photogenerated electrons for improving the transfer hydrogenation efficiency. The microfluidic-prepared tandem photocatalyst gives a meaningful guidance for the design and synthesis of heterojunction catalysts, which is promising for energy maximizing control systems.

Graphical abstract

摘要

异质结基光催化剂在各种多相催化中发挥着重要作用。具有两种半导体材料的 Z 型光催化系统适用于收集太阳能,而用于制造 Z 型异质结的先进纳米结构工具有限。本文在微流控系统中构建了WO3/MoS2(W/M0.2)异质结复合材料,并用X射线光电子能谱(XPS)、莫特-肖特基(M–S)分析和气相色谱-质谱仪(GC-MS)对其光催化性能进行了研究。此外,在硝基苯还原过程中,空穴(h+)氧化甲酸(HCOOH)提供氢源,沉积的Pd纳米颗粒富集了光生电子,提高了转移加氢效率。微流控制备的串联光催化剂为异质结催化剂的设计和合成提供了有意义的指导,在能量最大化控制系统中具有广阔的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Low JX, Yu JG, Jaroniec M, Swelm W, Al-Ghamdi AA. Heterojunction Photocatalysts. Adv Mater. 2017;29:1601694. https://doi.org/10.1002/adma.201601694.

    Article  CAS  Google Scholar 

  2. Deng HZ, Fei XG, Yang Y, Fan JJ, Yu JG, Cheng B, Zhang LY. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem Eng J. 2021;409:127337. https://doi.org/10.1016/j.cej.2020.127377.

    Article  CAS  Google Scholar 

  3. Hou YT, Guan HG, Yu JG, Cao SW. Potassium/oxygen co-doped polymeric carbon nitride for enhanced photocatalytic CO2 reduction. Appl Surf Sci. 2021;563:150310. https://doi.org/10.1016/j.apsusc.2021.150310.

    Article  CAS  Google Scholar 

  4. Wang LB, Cheng B, Zhang LY, Yu JG. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small. 2021;17(41):2103447. https://doi.org/10.1002/smll.202103447.

    Article  CAS  Google Scholar 

  5. Xie YY, Shang XT, Liu D, Zhao HB, Gu YY, Zhang ZZ, Wang XX. Non-noble metal thickness-tunable Bi2MoO6 nanosheets for highly efficient visible-light-driven nitrobenzene reduction into aniline. Appl Catal B. 2019;259:118087. https://doi.org/10.1016/j.apcatb.2019.118087.

    Article  CAS  Google Scholar 

  6. Kou JH, Lu CC, Wang J, Chen YK, Xu ZZ, Varma RS. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev. 2017;117(3):1445. https://doi.org/10.1021/acs.chemrev.6b00396.

    Article  CAS  Google Scholar 

  7. Tucker JW, Narayanam JMR, Krabbe SW, Stephenson CRJ. Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org Lett. 2010;12(2):368. https://doi.org/10.1021/ol902703k.

    Article  CAS  Google Scholar 

  8. Wang XL, Liu Y, Chen X. Tailoring magnetostriction and magnetic domains of <100>-oriented Fe80Ga16Al4 alloy by magnetic field annealing. Rare Met. 2021;40(3):563. https://doi.org/10.1007/s12598-020-01590-3.

    Article  CAS  Google Scholar 

  9. He KL, Shen RC, Hao L, Li YJ, Zhang P, Jiang JZ, Li X. Advances in nanostructured silicon carbide photocatalysts. Acta Phys-Chim Sin. 2022. https://doi.org/10.3866/pku.whxb202201021.

    Article  Google Scholar 

  10. Wang HJ, Li X, Zhao XX, Li CY, Song XH, Huo PW, Li X. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese J Catal. 2022;43:178. https://doi.org/10.1016/S1872-2067(21)63910-4.

    Article  CAS  Google Scholar 

  11. Xuan J, Xiao WJ. Visible-light photoredox catalysis. Angew Chem Int Ed. 2012;51(28):6828. https://doi.org/10.1002/anie.201200223.

    Article  CAS  Google Scholar 

  12. Guo MJ, Xing ZP, Zhao TY, Li ZZ, Yang SL, Zhou W. WS2 quantum dots/MoS2@WO3-x core-shell hierarchical dual Z-scheme tandem heterojunctions with wide-spectrum response and enhanced photocatalytic performance. Appl Catal B. 2019;257:117913. https://doi.org/10.1016/j.apcatb.2019.117913.

    Article  CAS  Google Scholar 

  13. Tahir MB, Sagir M, Shahzad K. Removal of acetylsalicylate and methyl-theo-bromine from aqueousenvironment using nano-photocatalyst WO3-TiO2@g-C3N4 composite. J Hazard Mater. 2019;363:205. https://doi.org/10.1016/j.jhazmat.2018.09.055.

    Article  CAS  Google Scholar 

  14. Sotelo-Vazquez C, Quesada-Cabrera R, Ling M, Scanlon DO, Kafizas A, Thakur PK, Lee TL, Taylor A, Watson GW, Palgrave RG, Durrant JR, Blackman CS, Parkin IP. Evidence and effect of photogenerated charge transfer for enhanced photocatalysis in WO3/TiO2 heterojunction films: a computational and experimental study. Adv Funct Mater. 2017;27(18):1605413. https://doi.org/10.1002/adfm.201605413.

    Article  CAS  Google Scholar 

  15. Shi W, Guo X, Cui C, Jiang K, Li Z, Qu L, Wang JC. Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible -light irradiation. Appl Catal B. 2019;243:236. https://doi.org/10.1016/j.apcatb.2018.09.076.

    Article  CAS  Google Scholar 

  16. Li YJ, Yin ZH, Ji GR, Liang ZQ, Xue YJ, Guo YC, Tian J, Wang XZ, Cui HZ. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl Catal B. 2019;246:12. https://doi.org/10.1016/j.apcatb.2019.01.051.

    Article  CAS  Google Scholar 

  17. Hu XL, Lu SC, Tian J, Wei N, Song XJ, Wang XJ, Cui HZ. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl Catal B. 2019;241:329. https://doi.org/10.1016/j.apcatb.2018.09.051.

    Article  CAS  Google Scholar 

  18. Wang M, Ju P, Li JJ, Zhao Y, Han XX, Hao ZM. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustainable Chem Eng. 2017;5(9):7878. https://doi.org/10.1021/acssuschemeng.7b01386.

    Article  CAS  Google Scholar 

  19. Yin WY, Yan L, Yu J, Tian G, Zhou LJ, Zheng XP, Zhang X, Yong Y, Li J, Gu ZJ, Zhao YL. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano. 2014;8(7):6922. https://doi.org/10.1021/nn501647j.

    Article  CAS  Google Scholar 

  20. Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE, Huang J, Brinker CJ, Dravid VP. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed. 2013;125(15):4160. https://doi.org/10.1002/ange.201209229.

    Article  Google Scholar 

  21. Liang ZH, Shen RC, Zhang P, Xing QJ, Li X. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Technol. 2020;56:89. https://doi.org/10.1016/j.jmst.2020.04.032.

    Article  CAS  Google Scholar 

  22. Adhikari S, Sarkar D, Maiti HS. Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater Res Bull. 2014;49:325. https://doi.org/10.1016/j.materresbull.2013.08.028.

    Article  CAS  Google Scholar 

  23. Zhang XL, Wang X, Wang DF, Ye JH. Conformal BiVO4-layer/WO3-nanoplate-array heterojunction photoanode modified with cobalt phosphate cocatalyst for significantly enhanced photoelectrochemical performances. ACS Appl Mater Interfaces. 2019;11(6):5623. https://doi.org/10.1021/acsami.8b05477.

    Article  CAS  Google Scholar 

  24. Zhang LL, Zhang HW, Wang B, Huang YX, Ye Y, Lei R, Feng WH, Liu P. A facile method for regulating the charge transfer route of WO3/CdS in high-efficiency hydrogen production. Appl Catal B. 2019;244:529. https://doi.org/10.1016/j.apcatb.2018.11.055.

    Article  CAS  Google Scholar 

  25. Wang SL, Zhu Y, Luo X, Huang Y, Chai J, Wong TI, Xu GQ. 2D WC/WO3 heterogeneous hybrid for photocatalytic decomposition of organic compounds with Vis-NIR light. Adv Funct Mater. 2018;28(11):1705357. https://doi.org/10.1002/adfm.201705357.

    Article  CAS  Google Scholar 

  26. Mamaghani AH, Haghighat F, Lee CS. Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification. Appl Catal B. 2020;269:118735. https://doi.org/10.1016/j.apcatb.2020.118735.

    Article  CAS  Google Scholar 

  27. Chen XH, Wei Q, Hong JD, Xu R, Zhou TH. Bifunctional metal–organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019;38(5):413. https://doi.org/10.1007/s12598-019-01259-6.

    Article  CAS  Google Scholar 

  28. Xu CP, Anusuyadevi PR, Aymonier C, Luque R, Marre S. Nanostructured materials for photocatalysis. Chem Soc Rev. 2019;48(14):3868. https://doi.org/10.1039/C9CS00102F.

    Article  CAS  Google Scholar 

  29. Pei C, Gong JL. Tandem catalysis at nanoscale. Science. 2021;371(6535):1203. https://doi.org/10.1126/science.abh0424?rss=1.

    Article  CAS  Google Scholar 

  30. Yan H, He K, Samek IA, Jing D, Nanda MG, Stair PC, Notestein JM. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science. 2021;371(6535):1257. https://doi.org/10.1126/science.abd4441?rss=1.

    Article  CAS  Google Scholar 

  31. Jiao F, Li JJ, Pan XL, Xiao JP, Li HB, Ma H, Wei MM, Pan Y, Zhou ZY, Li MR, Miao S, Li J, Zhu YF, Xiao D, He T, Yang JH, Qi F, Fu Q, Bao XH. Selective conversion of syngas to light olefins. Science. 2016;351(6277):1065. https://doi.org/10.1126/science.aaf1835.

    Article  CAS  Google Scholar 

  32. Gao P, Li SG, Bu XN, Dang SS, Liu Ziyu, Wang H, Zhong LS, Qiu MH, Yang CG, Cai J, Wei Wei, Sun YH. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem. 2017;9(10):1019. https://doi.org/10.1038/nchem.2794.

    Article  CAS  Google Scholar 

  33. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chinese Journal of Rare Metals. 2020;44(6):609. https://doi.org/10.13373/j.cnki.cjrm.xy18120018.

    Article  CAS  Google Scholar 

  34. Guan GJ, Xia J, Liu SH, Cheng Y, Bai SQ, Tee SY. Electrostatic-driven exfoliation and hybridization of 2D nanomaterials. Adv Mater. 2017;29(32):1700326. https://doi.org/10.1002/adma.201700326.

    Article  CAS  Google Scholar 

  35. Poulose AC, Zoppellaro G, Konidakis L, Serpetzoglou E, Stratakis E, Tomanec O, Beller M, Bakandritsos A, Zbořil R. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nature Nanotechnol. 2022;17(5):485. https://doi.org/10.1038/s41565-022-01087-3.

    Article  CAS  Google Scholar 

  36. Blaser HU, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Selective hydrogenation for fine chemicals: recent trends and new developments. Adv Synth Catal. 2003;345:103. https://doi.org/10.1002/adsc.200390000.

    Article  CAS  Google Scholar 

  37. Zhang LL, Zhang HW, Jiang CK, Yuan J, Huang XY. Z-scheme system of WO3@MoS2/CdS for photocatalytic evolution H2: MoS2 as the charge transfer mode switcher, electron-hole mediator and cocatalyst. Appl Catal B. 2019;259:118073. https://doi.org/10.1016/j.apcatb.2019.118073.

    Article  CAS  Google Scholar 

  38. Sun TH, Li ZP, Liu XH, Ma LM, Wang JQ, Yang SR. Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors. J Power Sources. 2017;352:135. https://doi.org/10.1016/j.jpowsour.2017.03.123.

    Article  CAS  Google Scholar 

  39. Gholami P, Khataee A, Bhatnagar A, Vahid B. Synthesis of N-doped magnetic WO3−x@mesoporous carbon using a diatom template and plasma modification: visible-light-driven photocatalytic activities. ACS Appl Mater Interfaces. 2021;13:13072. https://doi.org/10.1021/acsami.0c21076.

    Article  CAS  Google Scholar 

  40. Yan JQ, Wang T, Wu GJ, Dai WL, Guan NJ, Li LD, Gong JL. Tungsten oxide single crystal nanosheets for enhanced multi-channel solar light harvesting. Adv Mater. 2015;27:1580. https://doi.org/10.1002/adma.201404792.

    Article  CAS  Google Scholar 

  41. Pervez SA, Kim D, Doh CH, Farooq U, Choi HY, Choi JH. Anodic WO3 mesosponge@carbon: a novel binder-less electrode for advanced energy storage devices. ACS Appl Mater Interfaces. 2015;7:7635. https://doi.org/10.1021/acsami.5b00341.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Jiangsu Provincial Double-Innovation Doctor Program (No. JSSCBS20210996).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Yu or Wei-Kang Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7663 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Cao, XX., Liu, T. et al. Microfluidic assembly of WO3/MoS2 Z-scheme heterojunction as tandem photocatalyst for nitrobenzene hydrogenation. Rare Met. 42, 484–494 (2023). https://doi.org/10.1007/s12598-022-02169-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02169-w

Keywords

Navigation