Skip to main content
Log in

Sign reversal and manipulation of anomalous Hall resistivity in facing-target sputtered Pt/Mn4N bilayers

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The magnetic and electronic transport properties manipulated by spin–orbit torque have been devoted much attention as they show a great promise for future spintronic devices. Here, the spin dependent transport properties of the facing-target sputtered Pt/Mn4N bilayers on MgO (001) substrates have been investigated systematically. The Hall resistivity of Pt/Mn4N bilayers is strongly dependent on temperature, applied current intensity, Mn4N and Pt layer thicknesses. The temperature-dependent sign reversal of anomalous Hall resistivity appears in Pt/Mn4N bilayers, which is dominated by the competition between the magnetic proximity and spin Hall effects. Besides, the magnitude of anomalous Hall resistivity can be manipulated by applied current density. The critical and saturation currents are related to Mn4N and Pt layer thicknesses. Furthermore, a Dzyaloshinskii–Moriya interaction coefficient (D) of 5.63 mJ·m−2 is calculated in Pt/Mn4N/MgO systems. The details of the anomalous Hall effects in Pt/Mn4N bilayers are helpful to understand the interfacial effects between heavy metals and ferrimagnets.

摘要

通过自旋轨道矩调控磁性和电输运特性因在自旋电子器件的应用前景引起了诸多关注。本文采用对向靶溅射在MgO(001)基底上制备了Pt/Mn4N双层膜, 系统研究了其自旋相关的输运特性。Pt/Mn4N双层膜的霍尔电阻率与温度、电流强度、Mn4N和Pt厚度有强相关性。Pt/Mn4N双层膜的霍尔电阻率随温度变化发生翻转, 归因于磁近邻效应和自旋霍尔效应间的竞争。此外, 霍尔电阻率的大小还能通过电流强度调控, 临界电流密度与饱和电流密度与Mn4N和Pt厚度相关。计算结果表明Pt/Mn4N/MgO体系中的Dzyaloshinskii–Moriya相互作用系数为5.63 mJ·m-2。Pt/Mn4N双层膜中反常霍尔效应的研究有助于理解重金属与亚铁磁体间的界面效应。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brataas A, Hals KMD. Spin-orbit torques in action. Nat Nanotechnol. 2014;9(2):86. https://doi.org/10.1038/nnano.2014.8.

    Article  CAS  Google Scholar 

  2. van den Brink A, Cosemans S, Cornelissen S, Manfrini M, Vaysset A, Van Roy W, Min T, Swagten HJM, Koopmans B. Spin-Hall-assisted magnetic random access memory. Appl Phys Lett. 2014;104(1): 012403. https://doi.org/10.1063/1.4858465.

    Article  CAS  Google Scholar 

  3. Cubukcu M, Boulle O, Drouard M, Garello K, Onur Avci C, Mihai Miron I, Langer J, Ocker B, Gambardella P, Gaudin G. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl Phys Lett. 2014;104(4): 042406. https://doi.org/10.1063/1.4863407.

    Article  CAS  Google Scholar 

  4. Jabeur K, Pendina GD, Bernard-Granger F, Prenat G. Spin orbit torque non-volatile flip-flop for high speed and low energy applications. IEEE Electron Device Lett. 2014;35(3):408. https://doi.org/10.1109/LED.2013.2297397.

    Article  Google Scholar 

  5. Prenat G, Jabeur K, Vanhauwaert P, Pendina GD, Oboril F, Bishnoi R, Ebrahimi M, Lamard N, Boulle O, Garello K. Ultra-fast and high-reliability SOT-MRAM: from cache replacement to normally-off computing. IEEE Trans Multi-Scale Comput Syst. 2016;2(1):49. https://doi.org/10.1109/TMSCS.2015.2509963.

    Article  Google Scholar 

  6. Zhang N, Zhang B, Yang MY, Cai KM, Sheng Y, Li YC, Deng YC, Wang KY. Progress of electrical control magnetization reversal and domain wall motion. Acta Phys Sin. 2017;66(2): 027501. https://doi.org/10.7498/aps.66.027501.

    Article  CAS  Google Scholar 

  7. Garello K, Miron IM, Avci CO, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, Gambardella P. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotech. 2013;8(8):587. https://doi.org/10.1038/nnano.2013.145.

    Article  CAS  Google Scholar 

  8. Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang LT, Montazeri M, Yu G, Jiang W, Nie T, Schwartz RN, Tserkovnyak Y, Wang KL. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat Mater. 2014;13(7):699. https://doi.org/10.1038/nmat3973.

    Article  CAS  Google Scholar 

  9. Liu L, Pai C, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin-torque switching with the giant spin Hall effect of tantalum. Science. 2012;336(6081):555. https://doi.org/10.1126/science.1218197.

    Article  CAS  Google Scholar 

  10. Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat Mater. 2013;12(3):240. https://doi.org/10.1038/nmat3522.

    Article  CAS  Google Scholar 

  11. Liu L, Lee OJ, Gudmundsen TJ, Ralph DC, Buhrman RA. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys Rev Lett. 2012;109(9): 096602. https://doi.org/10.1103/PhysRevLett.109.096602.

    Article  CAS  Google Scholar 

  12. Woo S, Song KM, Han H, Jung M, Im M, Lee K, Song KS, Fischer P, Hong J, Choi JW, Min B, Koo HC, Chang J. Spin-orbit torque-driven skyrmion dynamics revealed by timeresolved X-ray microscopy. Nat Commun. 2017;8:15573. https://doi.org/10.1038/ncomms15573.

    Article  CAS  Google Scholar 

  13. Hals K, Arne B. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals. Phys Rev B. 2014;89(6): 064426. https://doi.org/10.1103/PhysRevB.89.064426.

    Article  CAS  Google Scholar 

  14. Lin S-Z, Reichhardt C, Batista CD, Saxena A. Particle model for skyrmions in metallic chiral magnets: dynamics, pinning, and creep. Phys Rev B. 2013;87(21): 214419. https://doi.org/10.1103/PhysRevB.87.214419.

    Article  CAS  Google Scholar 

  15. Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A. Emergent electrodynamics of skyrmions in a chiral magnet. Nat Phys. 2012;8(4):301. https://doi.org/10.1038/nphys2231.

    Article  CAS  Google Scholar 

  16. Everschor-Sitte K, Masell J, Reeve RM, Kläui M. Perspective: magnetic skyrmions-overview of recent progress in an active research field. J Appl Phys. 2018;124(24): 240901. https://doi.org/10.1063/1.5048972.

    Article  CAS  Google Scholar 

  17. Büttner F, Lemesh I, Beach GSD. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci Rep. 2018;8:4464. https://doi.org/10.1038/s41598-018-22242-8.

    Article  CAS  Google Scholar 

  18. Cai K, Zhu Z, Lee JM, Mishra R, Ren L, Pollard SD, He P, Liang G, Teo KL, Yang H. Ultrafast and energy-efficient spin-orbit torque switching in compensated ferrimagnets. Nat Electron. 2020;3(1):37. https://doi.org/10.1038/s41928-019-0345-8.

    Article  CAS  Google Scholar 

  19. Sala G, Krizakova V, Grimaldi E, Lambert CH, Devolder T, Gambardella P. Real-time Hall-effect detection of current-induced magnetization dynamics in ferrimagnets. Nat Commun. 2021;12:656. https://doi.org/10.1038/s41467-021-20968-0.

    Article  CAS  Google Scholar 

  20. Finley J, Liu L. Spin-orbit-torque efficiency in compensated ferromagnetic cobalt-terbium alloys. Phys Rev Appl. 2016;6(5): 054001. https://doi.org/10.1103/PhysRevApplied.6.054001.

    Article  CAS  Google Scholar 

  21. Mishra R, Yu J, Qiu X, Motapothula M, Venkatesan T, Yang H. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys Rev Lett. 2017;118(16): 167201. https://doi.org/10.1103/PhysRevLett.118.167201.

    Article  Google Scholar 

  22. Caretta L, Mann M, Buttner F, Ueda K, Pfau B, Gunther CM, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach GSD. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat Nanotechnol. 2018;13(12):1154. https://doi.org/10.1038/s41565-018-0255-3.

    Article  CAS  Google Scholar 

  23. Siddiqui SA, Han J, Finley JT, Ross CA, Liu L. Current-induced domain wall motion in a compensated ferrimagnet. Phys Rev Lett. 2018;121(5): 057701. https://doi.org/10.1103/PhysRevLett.121.057701.

    Article  CAS  Google Scholar 

  24. Roschewsky N, Matsumura T, Cheema S, Hellman F, Kato T, Iwata S, Salahuddin S. Spin-orbit torques in ferrimagnetic GdFeCo alloys. Appl Phys Lett. 2016;109(11):112403. https://doi.org/10.1063/1.4962812.

    Article  CAS  Google Scholar 

  25. Takei WJ, Shirane G, Frazer BC. Magnetic structure of Mn4N. Phys Rev. 1960;119(1):122. https://doi.org/10.1103/PhysRev.119.122.

    Article  CAS  Google Scholar 

  26. Yamada K, Oomaru K, Nakamura S, Sato T, Nakatani Y. Reducing the switching current with a Gilbert damping constant in nanomagnets with perpendicular anisotropy. Appl Phys Lett. 2015;106(4): 042402. https://doi.org/10.1063/1.4906599.

    Article  CAS  Google Scholar 

  27. Yasutomi Y, Ito K, Sanai T, Toko K, Suemasu T. Perpendicular magnetic anisotropy of Mn4N films on MgO (001) and SrTiO3 (001) substrates. J Appl Phys. 2014;115(17):17A935. https://doi.org/10.1063/1.4867955.

    Article  CAS  Google Scholar 

  28. Kabara K, Tsunoda M, Kokado S. Magneto-transport properties of pseudo-single-crystal Mn4N thin films. AIP Adv. 2017;7(5): 056416. https://doi.org/10.1063/1.4974065.

    Article  CAS  Google Scholar 

  29. Lau YC, Betto D, Rode K, Coey JMD, Stamenov P. Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat Nanotechnol. 2016;11(9):758. https://doi.org/10.1038/nnano.2016.84.

    Article  CAS  Google Scholar 

  30. Kwak WY, Kwon JH, Grünberg P, Han SH, Cho BK. Current-induced magnetic switching with spin-orbit torque in an interlayer-coupled junction with a Ta spacer layer. Sci Rep. 2018;8:3826. https://doi.org/10.1038/s41598-018-22122-1.

    Article  CAS  Google Scholar 

  31. Bhatt RC, Ye LX, Zou YJ, Ciou SZ, Wu JC, Wu TH. Study of sense current effect on magnetization switching behavior from anomalous Hall effect in TbFeCo thin films. J Magn Magn Mater. 2019;492: 165688. https://doi.org/10.1016/j.jmmm.2019.165688.

    Article  CAS  Google Scholar 

  32. Hai NT, Kindiak I, Yurlov V, Bhatt RC, Liao CM, Ye LX, Wu TH, Zvezdin KA, Wu JC. Unusual behavior of coercivity in Hf/GdFeCo bilayer with MgO cap layer by electric current. AIP Adv. 2020;10(10): 105202. https://doi.org/10.1063/5.0023636.

    Article  CAS  Google Scholar 

  33. Shen X, Chikamatsu A, Shigematsu K, Hirose Y, Fukumura T, Hasegawa T. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn4N epitaxial thin film. Appl Phys Lett. 2014;105(7): 072410. https://doi.org/10.1063/1.4893732.

    Article  CAS  Google Scholar 

  34. Meng M, Wu SX, Ren LZ, Zhou WQ, Wang YJ, Wang GL, Li SW. Extrinsic anomalous Hall effect in epitaxial Mn4N films. Appl Phys Lett. 2015;106(3): 032407. https://doi.org/10.1063/1.4906420.

    Article  CAS  Google Scholar 

  35. Bai H, Xu T, Dong Y, Zhou HA, Jiang W. Spin-torque switching in rare-earth-free compensated ferrimagnet Mn4N films. Adv Electron Mater. 2021;8(3):2100772. https://doi.org/10.1002/aelm.202100772.

    Article  CAS  Google Scholar 

  36. Wang GL, Wu SX, Meng M, Li HW, Li D, Hu P, Li SW. Tuning anomalous Hall effect in bilayers films by the interfacial spin-orbital coupling. J Appl Phys. 2018;123(11):113906. https://doi.org/10.1063/1.5021896.

    Article  CAS  Google Scholar 

  37. Meng M, Li S, Saghayezhian M, Plummer EW, Jin R. Observation of large exchange bias and topological Hall effect in manganese nitride films. Appl Phys Lett. 2018;112(13): 132402. https://doi.org/10.1063/1.5025147.

    Article  CAS  Google Scholar 

  38. Huang SY, Fan X, Qu D, Chen YP, Wang WG, Wu J, Chen TY, Xiao JQ, Chien CL. Transport magnetic proximity effects in platinum. Phys Rev Lett. 2012;109(10):107204. https://doi.org/10.1103/PhysRevLett.109.107204.

    Article  CAS  Google Scholar 

  39. Zhang Z, Shi X, Liu X, Chen X, Mi W. Microstructure, magnetic and electronic transport properties of reactively facing-target sputtered epitaxial Mn4N films. J Phys Condens Matter. 2022;34(6):065802. https://doi.org/10.1088/1361-648X/ac368e.

    Article  CAS  Google Scholar 

  40. Kabara K, Tsunoda M. Perpendicular magnetic anisotropy of Mn4N films fabricated by reactive sputtering method. J Appl Phys. 2015;117(17):17B512. https://doi.org/10.1063/1.4913730.

    Article  CAS  Google Scholar 

  41. Zeng C, Yao Y, Niu Q, Weitering HH. Linear magnetization dependence of the intrinsic anomalous Hall effect. Phys Rev Lett. 2006;96(3): 037204. https://doi.org/10.1103/PhysRevLett.96.037204.

    Article  CAS  Google Scholar 

  42. Mathieu R, Asamitsu A, Yamada H, Takahashi KS, Kawasaki M, Fang Z, Nagaosa N, Tokura Y. Interfacial resonance state probed by spin-polarized tunneling in epitaxial Fe/MgO/Fe tunnel junctions. Phys Rev Lett. 2004;93(10): 016602. https://doi.org/10.1103/PhysRevLett.93.106602.

    Article  CAS  Google Scholar 

  43. Langer J, Dunn JH, Hahlin A, Karis O, Sellmann R, Arvanitis D, Maletta H. Cap layer influence on the spin reorientation transition in Au/Co/Au. Phys Rev B. 2002;66(17): 172401. https://doi.org/10.1103/PhysRevB.66.172401.

    Article  CAS  Google Scholar 

  44. Shi X, Jiang J, Wang Y, Hou Z, Zhang Q, Mi W, Zhang X. Emergence of room temperature magnetotransport anomaly in epitaxial Pt/γ′-Fe4N/MgO heterostructures toward noncollinear spintronics. ACS Appl Mater Interfaces. 2021;13(22):26639. https://doi.org/10.1021/acsami.1c07098.

    Article  CAS  Google Scholar 

  45. Wang L, Feng Q, Lee HG, Ko EK, Lu Q, Noh TW. Controllable thickness inhomogeneity and Berry curvature engineering of anomalous Hall effect in SrRuO3 ultrathin films. Nano Lett. 2020;20(4):2468. https://doi.org/10.1021/acs.nanolett.9b05206.

    Article  CAS  Google Scholar 

  46. Xu WJ, Zhang B, Liu ZX, Wang Z, Li W, Wu ZB, Yu RH, Zhang XX. Anomalous Hall effect in Fe/Gd bilayers. Europhys Lett. 2010;90(2):27004. https://doi.org/10.1209/0295-5075/90/27004.

    Article  CAS  Google Scholar 

  47. Antel WJ, Schwickert MM Jr, Lin T, O’Brien WL, Harp GR. Induced ferromagnetism and anisotropy of Pt layers in Fe/Pt(001) multilayers. Phys Rev B. 1999;60(18):12933. https://doi.org/10.1103/PhysRevB.60.12933.

    Article  CAS  Google Scholar 

  48. Rüegg S, Schütz G, Fischer P, Wienke R, Zeper WB, Ebert H. Spin-dependent X-ray absorption in Co/Pt multilayers. J Appl Phys. 1991;69(8):5655. https://doi.org/10.1063/1.347926.

    Article  Google Scholar 

  49. Wilhelm F, Poilopoulos P, Ceballos G, Wende H, Baberschke K, Srivastava P, Benea D, Ebert H, Angelakeris M, Flevaris NK, Niarchos D, Rogalev A, Brookes NB. Layer-resolved magnetic moments in NiPt multilayers. Phys Rev Lett. 2000;85(2):413. https://doi.org/10.1103/PhysRevLett.85.413.

    Article  CAS  Google Scholar 

  50. Liang X, Shi G, Deng L, Huang F, Qin J, Tang T, Wang C, Peng B, Song C, Bi L. Magnetic proximity effect and anomalous Hall effect in Pt/Y3Fe5-xAlxO12 heterostructures. Phys Rev Appl. 2018;10(2):024051. https://doi.org/10.1103/PhysRevApplied.10.024051.

    Article  CAS  Google Scholar 

  51. Chen YT, Nakayama SH, Althammer M, Goennenwein STB, Saitoh E, Bauer GEW. Theory of spin Hall magnetoresistance. Phys Rev B. 2013;87(14):144411. https://doi.org/10.1103/PhysRevB.87.144411.

    Article  CAS  Google Scholar 

  52. Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev Mod Phys. 2015;87(4):1213. https://doi.org/10.1103/RevModPhys.87.1213.

    Article  Google Scholar 

  53. Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous Hall effect. Rev Mod Phys. 2010;82(2):1539. https://doi.org/10.1103/RevModPhys.82.1539.

    Article  Google Scholar 

  54. Wang Z, Tang C, Sachs R, Barlas Y, Shi J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys Rev Lett. 2015;114(1):016603. https://doi.org/10.1103/PhysRevLett.114.016603.

    Article  CAS  Google Scholar 

  55. Meyer S, Althammer M, Geprägs S, Opel M, Gross R, Goennenwein STB. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements. Appl Phys Lett. 2014;104(24):242411. https://doi.org/10.1063/1.4885086.

    Article  CAS  Google Scholar 

  56. Chen YT, Takahashi S, Nakayama H, Althammer M, Goennenwein ST, Saitoh E, Bauer GE. Theory of spin Hall magnetoresistance (SMR) and related phenomena. J Phys Conden Matter. 2016;28(10):103004. https://doi.org/10.1088/0953-8984/28/10/103004.

    Article  CAS  Google Scholar 

  57. Sharon Y, Khachatryan B, Cheskis D. Towards a low current Hall effect sensor. Sens Actuators A. 2018;279:278. https://doi.org/10.1016/j.sna.2018.06.027.

    Article  CAS  Google Scholar 

  58. Yang H, Boulle O, Cros V, Fert A, Chshiev M. Controlling Dzyaloshinskii-Moriya interaction via chirality dependent atomic-layer stacking, insulator capping and electric field. Sci Rep. 2018;8:12356. https://doi.org/10.1038/s41598-018-30063-y.

    Article  CAS  Google Scholar 

  59. Ma CT, Hartnett TQ, Zhou W, Balachandran PV, Poon SJ. Tunable magnetic skyrmions in ferrimagnetic Mn4N. Appl Phys Lett. 2021;119(19): 192406. https://doi.org/10.1063/5.0066375.

    Article  CAS  Google Scholar 

  60. Yang H, Thiaville A, Rohart S, Fert A, Chshiev M. Anatomy of Dzyaloshinskii-Moriya interaction at Co/Pt interfaces. Phys Rev Lett. 2015;115(26):267210. https://doi.org/10.1103/PhysRevLett.115.267210.

    Article  CAS  Google Scholar 

  61. Woo S, Litzius K, Krüger B, Im MY, Caretta L, Richter K, Mann M, Krone A, Reeve RM, Weigand M, Agrawal P, Lemesh I, Mawass MA, Fischer P, Kläui M, Beach GSD. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat Mater. 2016;15(5):501. https://doi.org/10.1038/nmat4593.

    Article  CAS  Google Scholar 

  62. Boulle O, Vogel J, Yang H, Pizzini S, De Souza Chaves DS, Locatelli A, Mentes TO, Sala A, Buda-Prejbeanu LD, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif SM, Aballe L, Foerster M, Chshiev M, Auffret S, Miron IM, Gaudin G. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat Nanotechnol. 2016;11(5):449. https://doi.org/10.1038/nnano.2015.315.

    Article  CAS  Google Scholar 

  63. Wei WS, He ZD, Qu Z, Du HF. Dzyaloshinskii-Moriya interaction (DMI)-induced magnetic skyrmion materials. Rare Met. 2021;40(11):3076. https://doi.org/10.1007/s12598-021-01746-9.

    Article  CAS  Google Scholar 

  64. Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang XX, Liu J. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat Commun. 2020;11:3577. https://doi.org/10.1038/s41467-020-17354-7.

    Article  CAS  Google Scholar 

  65. Li S, Du A, Wang Y, Wang X, Zhang X, Cheng H, Cai W, Lu S, Cao K, Pan B, Lei N, Kang W, Liu J, Fert A, Hou Z, Zhao W. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Sci Bull. 2022;67(7):691. https://doi.org/10.1016/j.scib.2022.01.016.

    Article  CAS  Google Scholar 

  66. Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T. Magnetic vortex core observation in circular dots of permalloy. Science. 2000;289(5481):930. https://doi.org/10.1126/science.289.5481.930.

    Article  CAS  Google Scholar 

  67. Gushi T, Vila L, Fruchart O, Marty A, Pizzini S, Vogel J, Takata F, Anzai A, Toko K, Suemasu T, Attané JP. Millimeter-sized magnetic domains in perpendicularly magnetized ferrimagnetic Mn4N thin films grown on SrTiO3. Jpn J Appl Phys. 2018;57(12):120310. https://doi.org/10.7567/JJAP.57.120310.

    Article  Google Scholar 

  68. Orlov VA, Patrin GS, Dolgopolova MV, Orlova IN. Magnetic vortex near the extended linear magnetic inhomogeneity. J Magn Magn Mater. 2021;533:167999. https://doi.org/10.1016/j.jmmm.2021.167999.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52071233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bo Mi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 12159 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZY., Jiang, JW., Shi, XH. et al. Sign reversal and manipulation of anomalous Hall resistivity in facing-target sputtered Pt/Mn4N bilayers. Rare Met. 42, 591–601 (2023). https://doi.org/10.1007/s12598-022-02166-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02166-z

Keywords

Navigation