Skip to main content

Advertisement

Log in

Advanced carbon-based materials for Na, K, and Zn ion hybrid capacitors

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Developing electrochemical energy storage devices with high energy and power densities, long cycling life, as well as low cost is of great significance. Hybrid metal-ion capacitors (MICs), commonly consisting of high energy battery-type anodes and high power capacitor-type cathodes, have become a trade-off between batteries and supercapacitors. Tremendous efforts have been devoted to searching for high-performance electrode materials due to poor rate capability of anodes, low capacity of cathodes, and interior sluggish kinetic match. Carbon materials with large surface area, good electrical conductivity and stability have been considered to be ideal candidates for electrodes of MICs. In this review, the advanced carbon materials directly as cathodes and anodes of MICs are systematically summarized. Then, the key structural/chemical factors including the structure engineering, porous characteristics, and heteroatom incorporation for improving electrochemical performance of carbon materials are highlighted. Additionally, the challenges and opportunities for future research on carbon materials in MICs are also proposed.

Graphical abstract

摘要

开发高能量和功率密度、长循环寿命以及低成本的电化学储能装置是至关重要的。近年来,金属离子电容器(MICs)通常由高能量电池型阳极和高功率电容器型阴极组成,因其具有金属电池和超级电容器两者特点引起研究者的广泛兴趣。但其仍然受限于较弱的负极倍率性能、较低的正极容量以及缓慢的反应动力学,迫切需要发展新型高性能电极材料。碳材料因具有较高表面积和良好导电性被认为是MICs电极的理想候选材料之一。该综述系统地总结了先进碳材料直接作为MICs正极和负极的应用进展,重点强调了一系列提高碳材料电化学性能的方法策略,包括结构工程、多孔特性和杂原子掺杂。此外,本文提出了碳材料在MICs未来研究中的挑战和机遇。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011;7(14):1876. https://doi.org/10.1002/smll.201002009.

    Article  CAS  Google Scholar 

  2. Chao D, Qiao SZ. Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule. 2020;4:1846. https://doi.org/10.1016/j.joule.2020.07.023.

    Article  Google Scholar 

  3. Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Adv Mater. 2012;24(33):4473. https://doi.org/10.1002/adma.201201715.

    Article  CAS  Google Scholar 

  4. Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci. 2011;4(5):1592. https://doi.org/10.1039/C0EE00470G.

    Article  CAS  Google Scholar 

  5. Chao D, Zhou W, Xie F, Ye C, Li H, Jaroniec M, Qiao SZ. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv. 2020;6(21):eaba4098. https://doi.org/10.1126/sciadv.aba4098.

    Article  CAS  Google Scholar 

  6. Yang W, Yang W, Kong LN, Song AL, Qin XJ, Shao GJ. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon. 2018;127:557.

    Article  CAS  Google Scholar 

  7. Yang WP, Li XX, Li Y, Zhu RM, Pang H. Applications of metal-organic-framework-derived carbon materials. Adv Mater. 2019;31(6):1804740. https://doi.org/10.1016/j.carbon.2017.11.050.

    Article  CAS  Google Scholar 

  8. Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):1600539. https://doi.org/10.1002/advs.201600539.

    Article  CAS  Google Scholar 

  9. Zhu YE, Yang LP, Sheng J, Chen YN, Gu HC, Wei JP, Zhou Z. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv Energy Mater. 2017;7(22):1701222. https://doi.org/10.1002/aenm.201701222.

    Article  CAS  Google Scholar 

  10. Liu J, Zhou W, Zhao R, Yang Z, Li W, Chao D, Qiao SZ, Zhao D. Sulfur-based aqueous batteries: electrochemistry and strategies. J Am Chem Soc. 2021;143(38):15475. https://doi.org/10.1021/jacs.1c06923.

    Article  CAS  Google Scholar 

  11. Divya ML, Lee YS, Aravindan V. Solvent co-intercalation: an emerging mechanism in Li-, Na-, and K-ion capacitors. ACS Energy Lett. 2021;6(12):4228. https://doi.org/10.1021/acsenergylett.1c01801.

    Article  CAS  Google Scholar 

  12. Hong ZS, Maleki H, Ludwig T, Zhen YC, Wilhelm M, Lee D, Kim KH, Mathur S. New insights into carbon-based and MXene anodes for Na and K-ion storage: a review. J Energy Chem. 2021;62:660. https://doi.org/10.1016/j.jechem.2021.04.031.

    Article  CAS  Google Scholar 

  13. Liu X, Sun YJ, Tong Y, Wang XY, Zheng JF, Wu YJ, Li HY, Niu L, Hou Y. Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: a review. Nano Energy. 2021;86:106070. https://doi.org/10.1016/j.nanoen.2021.106070.

    Article  CAS  Google Scholar 

  14. Zou KY, Song ZR, Gao X, Liu HQ, Luo Z, Chen J, Deng XL, Chen LB, Zou GQ, Hou HS, Ji XB. Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew Chem Int Ed. 2021;60(31):17070. https://doi.org/10.1002/anie.202103569.

    Article  CAS  Google Scholar 

  15. Liu Y, Wang SC, Sun, Zhang JY, Zaman F, Hou LR, Yuan CZ. Sub-nanoscale engineering of MoO2 clusters for enhanced sodium storage. Energy Environ Mater. 2021. https://doi.org/10.1002/eem2.12263.

  16. Pan QG, Gong DC, Tang YB. Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Mater. 2020;31:328. https://doi.org/10.1016/j.ensm.2020.06.025.

    Article  Google Scholar 

  17. Deng XL, Zou KY, Cai P, Wang BW, Hou HS, Zou GQ, Ji XB. Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Meth. 2020;4(10):2000401. https://doi.org/10.1002/smtd.202000401.

    Article  CAS  Google Scholar 

  18. Chen MX, Wang L, Sheng XH, Wang T, Zhou J, Li SY, Shen XH, Zhang M, Zhang QS, Yu XZ, Zhu J, Lu BA. An ultrastable nonaqueous potassium-ion hybrid capacitor. Adv Funct Mater. 2020;30(40):2004247. https://doi.org/10.1002/adfm.202004247.

    Article  CAS  Google Scholar 

  19. Lei KX, Wang J, Chen C, Li SY, Wang SW, Zheng SJ, Li FJ. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020;39(9):989. https://doi.org/10.1007/s12598-020-01463-9.

    Article  CAS  Google Scholar 

  20. Qiu ZM, Bai Y, Gao YD, Liu CL, Ru Y, Pi YC, Zhang YZ, Luo YS, Pang H. MXenes nanocomposites for energy storage and conversion. Rare Met. 2022;41(4):1101. https://doi.org/10.1007/s12598-021-01876-0.

    Article  CAS  Google Scholar 

  21. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019. https://doi.org/10.1007/s12598-020-01443-z.

    Article  CAS  Google Scholar 

  22. Li ZW, Chen DH, An YF, Chen CL, Wu LY, Chen ZJ, Sun Y, Zhang XG. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020;28:307. https://doi.org/10.1016/j.ensm.2020.01.028.

    Article  CAS  Google Scholar 

  23. Nagamuthu S, Zhang YM, Xu Y, Sun JF, Zhang YM, Zaman Fu, Denis DK, Hou LR, Yuan CZ. Non-lithium-based metal ion capacitors: recent advances and perspectives. J Mater Chem A. 2022; 10(2): 357. https://doi.org/10.1039/D1TA09119K.

  24. Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater. 2015;14(3):271. https://doi.org/10.1038/nmat4170.

    Article  CAS  Google Scholar 

  25. Wang TY, Chen SQ, Pang H, Xue HG, Yu Y. MoS2-based nanocomposites for electrochemical energy storage. Adv Sci. 2017;4(2):1600289. https://doi.org/10.1002/advs.2016002.

    Article  Google Scholar 

  26. Wang BW, Gao X, Xu LQ, Zou KY, Cai P, Deng XL, Yang L, Hou HS, Zou GQ, Ji XB. Advanced carbon materials for sodium-ion capacitors. Batteries Supercaps. 2021;4(4):538. https://doi.org/10.1002/batt.202000291.

    Article  CAS  Google Scholar 

  27. Zhang YD, Jiang JM, An YF, Wu LY, Dou H, Zhang JX, Zhang Y, Wu SD, Dong MY, Zhang XG, Guo ZH. Sodium-ion capacitors: materials, mechanism, and challenges. Chemsuschem. 2020;13(10):2522. https://doi.org/10.1002/cssc.201903440.

    Article  CAS  Google Scholar 

  28. Jia R, Shen GZ, Chen D. Recent progress and future prospects of sodium-ion capacitors. Sci China Mater. 2019;63(2):185. https://doi.org/10.1007/s40843-019-1188-x.

    Article  CAS  Google Scholar 

  29. Xu J, Dou SM, Cui XY, Liu WD, Zhang ZC, Deng YD, Hu WB, Chen YN. Potassium-based electrochemical energy storage devices: development status and future prospect. Energy Storage Mater. 2021;34:85. https://doi.org/10.1016/j.ensm.2020.09.001.

    Article  CAS  Google Scholar 

  30. Feng X, Bai Y, Liu M, Li Y, Yang H, Wang X, Wu C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ Sci. 2021;14(4):2036. https://doi.org/10.1039/d1ee00166c.

    Article  CAS  Google Scholar 

  31. Chen Z, Augustyn V, Jia XL, Xiao QF, Dunn B, Lu YF. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano. 2012;6(5):4319. https://doi.org/10.1021/nn300920e.

    Article  CAS  Google Scholar 

  32. Kuratani K, Yao M, Senoh H, Takeichi N, Sakai T, Kiyobayashi T. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon. Electrochim Acta. 2012;76:320. https://doi.org/10.1016/j.electacta.2012.05.040.

    Article  CAS  Google Scholar 

  33. Ding J, Hu WB, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. 2018;118(14):6457. https://doi.org/10.1021/acs.chemrev.8b00116.

    Article  CAS  Google Scholar 

  34. Yuan J, Hu X, Liu Y, Zhong G, Yu B, Wen Z. Recent progress in sodium/potassium hybrid capacitors. Chem Commun. 2020;56(90):13933. https://doi.org/10.1039/dcc476c.

    Article  CAS  Google Scholar 

  35. Dubey P, Shrivastav V, Maheshwari PH, Sundriyal S. Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: challenges and opportunities. Carbon. 2020;170:1. https://doi.org/10.1016/j.carbon.2020.07.056.

    Article  CAS  Google Scholar 

  36. Saikia BK, Benoy SM, Bora M, Tamuly J, Pandey M, Bhattacharya D. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel. 2020;282: 118796. https://doi.org/10.1016/j.fuel.2020.118796.

    Article  CAS  Google Scholar 

  37. Xu D, Chao D, Wang H, Gong Y, Wang R, He B, Hu X, Fan HJ. Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv Energy Mater. 2018;8(13):1702769. https://doi.org/10.1002/aenm.201702769.

    Article  CAS  Google Scholar 

  38. Xu ZQ, Wu MQ, Chen Z, Chen C, Yang J, Feng TT, Paek E, Mitlin D. Direct structure- performance comparison of all-carbon potassium and sodium ion capacitors. Adv Sci. 2019;6(12):1802272. https://doi.org/10.1002/advs.201802272.

    Article  CAS  Google Scholar 

  39. Kim J, Choi MS, Shin KH, Kota M, Kang Y, Lee S, Lee JY, Park HS. Rational design of carbon nanomaterials for electrochemical sodium storage and capture. Adv Mater. 2019;31(34):1803444. https://doi.org/10.1002/adma.201970239.

    Article  CAS  Google Scholar 

  40. Zhu YE, Yang LP, Sheng J, Chen YN, Gu HC, Wei JP, Zhou Z. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv Energy Mater. 2017;7(22):1701222. https://doi.org/10.1002/aenm.201701222.

    Article  CAS  Google Scholar 

  41. Hsu YK, Chen YC, Lin YG, Chen LC, Chen KH. High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. J Mater Chem. 2012;22(8):3383. https://doi.org/10.1039/c1jm14716a.

    Article  CAS  Google Scholar 

  42. Chen MH, Chao DL, Liu JL, Yan JX, Zhang BW, Huang YZ, Lin JY, Shen ZX. Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays. Adv Funct Mater. 2017;27(12):1606232. https://doi.org/10.1002/adfm.201606232.

    Article  CAS  Google Scholar 

  43. Hill JP, Jin WS, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science. 2004;304(5676):1481. https://doi.org/10.1126/science.1097789.

    Article  CAS  Google Scholar 

  44. Teng YQ, Zhao HL, Zhang ZJ, Li ZL, Xia Q, Zhang Y, Zhao LN, Du XF, Du ZH, Lv PP, Swierczek K. MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano. 2016;10(9):8526. https://doi.org/10.1021/acsnano.6b03683.

    Article  CAS  Google Scholar 

  45. Wasalathilake KC, Ayoko GA, Yan C. Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: a density functional theory investigation. Carbon. 2018;140:276. https://doi.org/10.1016/j.carbon.2018.08.071.

    Article  CAS  Google Scholar 

  46. Zhao Q, Yang D, Zhang C, Liu X, Fan X, Whittaker AK, Zhao XS. Tailored polyimide-graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl Mater Inter. 2018;10(50):43730. https://doi.org/10.1021/acsami.8b17171.

    Article  CAS  Google Scholar 

  47. Dong SY, Xu YL, Wu LY, Dou H, Zhang XG. Surface-functionalized graphene-based quasi- solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Mater. 2018;11:8. https://doi.org/10.1016/j.ensm.2017.09.006.

    Article  Google Scholar 

  48. Yu F, Liu ZC, Zhou RW, Tan DM, Wang HX, Wang FX. Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Materials Horiz. 2018;5(3):529. https://doi.org/10.1039/c8mh00156a.

    Article  CAS  Google Scholar 

  49. Ding J, Wang HL, Li Z, Cui K, Karpuzov D, Tan XH, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ Sci. 2015;8(3):941. https://doi.org/10.1039/c4ee02986k.

    Article  CAS  Google Scholar 

  50. Li HX, Lang JW, Lei SL, Chen JT, Wang KJ, Liu LY, Zhang TY, Liu WS, Yan XB. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv Funct Mater. 2018;28(30):1800757. https://doi.org/10.1002/adfm.201800757.

    Article  CAS  Google Scholar 

  51. Aravindan V, Ulaganathan M, Madhavi S. Research progress in Na-ion capacitors. J Mater Chem A. 2016;4(20):7538. https://doi.org/10.1039/c6ta02478e.

    Article  CAS  Google Scholar 

  52. Wang XF, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun. 2015;6:6544. https://doi.org/10.1038/ncomms7544.

    Article  CAS  Google Scholar 

  53. Bak SM, Qiao RM, Yang WL, Lee S, Yu XQ, Anasori B, Lee HS, Gogotsi Y, Yang XQ. Na-ion intercalation and charge storage mechanism in 2D vanadium carbide. Adv Energy Mater. 2017;7(20):1700959. https://doi.org/10.1002/aenm.201700959.

    Article  CAS  Google Scholar 

  54. Wang C, Zhao N, Li BH, Yu QT, Shen WC, Kang FY, Lv RT, Huang ZH. Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors. J Mater Chem A. 2021;9(36):20483. https://doi.org/10.1039/d1ta05755c.

    Article  CAS  Google Scholar 

  55. Ajuria J, Redondo E, Arnaiz M, Mysyk R, Rojo T, Goikolea E. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J Power Sources. 2017;359:17. https://doi.org/10.1016/j.jpowsour.2017.04.107.

    Article  CAS  Google Scholar 

  56. Ding YQ, Yang BJ, Chen JT, Zhang L, Li JS, Li YL, Yan XB. Nanotube-like hard carbon as high-performance anode material for sodium ion hybrid capacitors. Sci China Mater. 2017;61(2):285. https://doi.org/10.1007/s40843-017-9141-7.11.

    Article  Google Scholar 

  57. Kubota K, Shimadzu S, Yabuuchi N, Tominaka S, Shiraishi S, Abreu-Sepulveda M, Manivannan A, Gotoh K, Fukunishi M, Dahbi M, Komaba S. Structural analysis of sucrose- derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem Mater. 2020;32(7):2961. https://doi.org/10.1021/acs.chemmater.9b05235.

    Article  CAS  Google Scholar 

  58. Cao B, Liu H, Xu B, Lei YF, Chen XH, Song HH. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J Mater Chem A. 2016;4(17):6472. https://doi.org/10.1039/C6TA00950F.

    Article  CAS  Google Scholar 

  59. Guo B, Wang X, Fulvio FP, Chi M, Mahurin MS, Sun XG, Dai S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater. 2011;23(40):4661. https://doi.org/10.1002/adma.201102032.

    Article  CAS  Google Scholar 

  60. Zhang C, Liu X, Li Z, Zhang C, Chen Z, Pan D, Wu M. Nitrogen-doped accordion-like soft carbon anodes with exposed hierarchical pores for advanced potassium-ion hybrid capacitors. Adv Funct Mater. 2021;31(23):2101470. https://doi.org/10.1002/adfm.202101470.

    Article  CAS  Google Scholar 

  61. Niu J, Liang JJ, Shao R, Liu MY, Dou ML, Li ZL, Huang YQ, Wang F. Tremella-like N, O- codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy. 2017;41:285. https://doi.org/10.1016/j.nanoen.2017.09.041.

    Article  CAS  Google Scholar 

  62. Yang BJ, Chen JT, Lei SL, Guo RS, Li HX, Shi SQ, Yan XB. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv Energy Mater. 2018;8(10):1702409. https://doi.org/10.1002/aenm.201702409.

    Article  CAS  Google Scholar 

  63. Zou KY, Cai P, Liu C, Li JY, Gao X, Xu LQ, Zou GQ, Hou HS, Liu ZM, Ji XB. A kinetically well-matched full-carbon sodium-ion capacitor. J Mater Chem A. 2019;7(22):13540. https://doi.org/10.1039/C9TA03797G.

    Article  CAS  Google Scholar 

  64. Chen CM, Yang YC, Ding SS, Wei ZX, Tang X, Li PC, Wang TH, Cao GZ, Zhang M. S-doped carbon@TiO2 to store Li+/Na+ with high capacity and long life-time. Energy Storage Mater. 2018;13:215. https://doi.org/10.1016/j.ensm.2018.01.015.

    Article  Google Scholar 

  65. Luo SN, Yuan T, Soule L, Ruan JF, Zhao YH, Sun DL, Yang JH, Liu ML, Zheng SY. Enhanced ionic/electronic transport in nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors. Adv Funct Mater. 2019;30(5):1908309. https://doi.org/10.1002/adfm.201908309.

    Article  CAS  Google Scholar 

  66. Que LF, Yu FD, Wang ZB, Gu DM. Pseudocapacitance of TiO2-x/CNT anodes for high- performance quasi-solid-state Li-ion and Na-ion capacitors. Small. 2018;14(17):1704508. https://doi.org/10.1002/smll.201704508.

    Article  CAS  Google Scholar 

  67. Huang HJ, Xu R, Feng YZ, Zeng SF, Jiang Y, Wang HJ, Luo W, Yu Y. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv Mater. 2020;32(8):1904320. https://doi.org/10.1002/adma.201904320.

    Article  CAS  Google Scholar 

  68. Hu X, Wang G, Li J, Huang J, Liu Y, Zhong G, Yuan J, Zhan H, Wen Z. Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium–ion hybrid capacitors. Energy Environ Sci. 2021;14(8):4564. https://doi.org/10.1039/D1EE00370D.

    Article  CAS  Google Scholar 

  69. Xie XQ, Zhao MQ, Anasori B, Maleski K, Ren CE, Li JW, Byles BW, Pomerantseva E, Wang GX, Gogotsi Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy. 2016;26:513. https://doi.org/10.1016/j.nanoen.2016.06.005.

    Article  CAS  Google Scholar 

  70. Yan RY, Leus K, Hofmann JP, Antonietti M, Oschatz M. Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy. 2020;67: 104240. https://doi.org/10.1016/j.nanoen.2019.104240.

    Article  CAS  Google Scholar 

  71. Bin DS, Lin XJ, Sun YG, Xu YS, Zhang K, Cao AM, Wan LJ. Engineering hollow carbon architecture for high-performance K-ion battery anode. J Am Chem Soc. 2018;140(23):7127. https://doi.org/10.1021/jacs.8b02178.

    Article  CAS  Google Scholar 

  72. Sun Y, Wang H, Wei W, Zheng Y, Tao L, Wang Y, Huang M, Shi J, Shi ZC, Mitlin D. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance. ACS Nano. 2021;15(1):1652. https://doi.org/10.1021/acsnano.0c09290.

    Article  CAS  Google Scholar 

  73. Zhao S, Liu Z, Xie G, Guo X, Guo Z, Song F, Li G, Chen C, Xie X, Zhang N, Sun B, Guo S, Wang G. Achieving high-performance 3D K+-pre-intercalated Ti3C2Tx MXene for potassium-ion hybrid capacitors via regulating electrolyte solvation structure. Angew Chem Int Ed. 2021;60(50):26246. https://doi.org/10.1002/anie.202112090.

    Article  CAS  Google Scholar 

  74. Fan L, Lin KR, Wang J, Ma RF, Lu BA. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv Mater. 2018;30(20):1800804. https://doi.org/10.1002/adma.201800804.

    Article  CAS  Google Scholar 

  75. Pham HD, Mahale K, Hoang TML, Mundree SG, Gomez-Romero P, Dubal DP. Dual carbon potassium-ion capacitors: biomass-derived graphene-like carbon nanosheet cathodes. ACS Appl Mater Inter. 2020;12(43):48518. https://doi.org/10.1021/acsami.0c12379.

    Article  CAS  Google Scholar 

  76. Chen Z, Li WL, Yang J, Liao JX, Chen C, Song YC, Ali Shah SA, Xu ZQ, Wu MQ. Excellent electrochemical performance of potassium ion capacitor achieved by a high nitrogen doped activated carbon. J Electrochem Soc. 2020;167(5):050506. https://doi.org/10.1149/1945-7111/ab6a84.

    Article  CAS  Google Scholar 

  77. Moussa M, Al-Bataineh SA, Losic D, Dubal DP. Engineering of high-performance potassium- ion capacitors using polyaniline-derived N-doped carbon nanotubes anode and laser scribed graphene oxide cathode. Appl Mater Today. 2019;16:425. https://doi.org/10.1016/j.apmt.2019.07.003.

    Article  Google Scholar 

  78. Zhang CL, Xu Y, Du GY, Wu YH, Li YL, Zhao HP, Kaiser U, Lei Y. Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy. 2020;72:104661. https://doi.org/10.1016/j.nanoen.2020.104661.

    Article  CAS  Google Scholar 

  79. Li YJ, Yang Y, Zhou P, Gao TT, Xu ZK, Lin SY, Chen H, Zhou JH, Guo SJ. Enhanced cathode and anode compatibility for boosting both energy and power densities of Na/K-ion hybrid capacitors. Matter. 2019;1(4):893. https://doi.org/10.1016/j.matt.2019.04.003.

    Article  Google Scholar 

  80. Xu Y, Ruan JF, Pang YP, Sun H, Liang C, Li HW, Yang JH, Zheng SY. Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 2020;13(1):14. https://doi.org/10.1007/s40820-020-00524-z.

    Article  CAS  Google Scholar 

  81. Cui YP, Liu W, Wang X, Li JJ, Zhang Y, Du YX, Liu S, Wang HL, Feng WT, Chen M. Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano. 2019;13(10):11582. https://doi.org/10.1021/acsnano.9b05284.

    Article  CAS  Google Scholar 

  82. Li JW, Hu X, Zhong GB, Liu YJ, Ji YX, Chen JX, Wen ZH. A general self-sacrifice template strategy to 3D heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 2021;13(1):131. https://doi.org/10.1007/s40820-021-00659-7.

    Article  CAS  Google Scholar 

  83. Zhang GX, Wang L, Hao YC, Jin XY, Xu YQ, Kuang Y, Dai LM, Sun XM. Unconventional carbon: Alkaline dehalogenation of polymers yields N-doped carbon electrode for high- performance capacitive energy storage. Adv Funct Mater. 2016;26(19):3340. https://doi.org/10.1002/adfm.201505533.

    Article  CAS  Google Scholar 

  84. Qiu DP, Guan JY, Li M, Kang CH, Wei JY, Li Y, Xie ZY, Wang F, Yang R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater. 2019;29(32):1903496. https://doi.org/10.1002/adfm.201903496.

    Article  CAS  Google Scholar 

  85. Luo HY, Chen MX, Cao JH, Zhang M, Tan S, Wang L, Zhong J, Deng HL, Zhu J, Lu BA. Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 2020;12(1):113. https://doi.org/10.1007/s40820-020-00454-w.

    Article  CAS  Google Scholar 

  86. Shao MJ, Li CX, Li T, Zhao H, Yu WQ, Wang RT, Zhang J, Yin LW. Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal-organic framework derived porous carbon microsheets anode. Adv Funct Mater. 2020;30(51):2006561. https://doi.org/10.1002/adfm.202006561.

    Article  CAS  Google Scholar 

  87. Li XQ, Chen MX, Wang L, Xu HJ, Zhong J, Zhang M, Wang YY, Zhang QS, Mei L, Wang T, Zhu J, Lu BA, Duan XD. Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale Horiz. 2020;5(12):1586. https://doi.org/10.1039/D0NH90058C.

    Article  CAS  Google Scholar 

  88. Lu GF, Wang HL, Zheng YL, Zhang H, Yang YP, Shi J, Huang MH, Liu W. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium- and potassium-ion storage. Electrochim Acta. 2019;319:541. https://doi.org/10.1016/j.electacta.2019.07.026.

    Article  CAS  Google Scholar 

  89. Chen JT, Yang BJ, Hou HJ, Li HX, Liu L, Zhang L, Yan XB. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv Energy Mater. 2019;9(19):1803894. https://doi.org/10.1002/aenm.201803894.

    Article  CAS  Google Scholar 

  90. Hu X, Zhong GB, Li JW, Liu YJ, Yuan J, Chen JX, Zhan HB, Wen ZH. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ Sci. 2020;13(8):2431. https://doi.org/10.1039/D0EE00477D.

    Article  Google Scholar 

  91. Zhong GB, Lei S, Hu X, Ji YX, Liu YJ, Yuan J, Li JW, Zhan HB, Wen ZH. Facile synthesis of P-doped carbon nanosheets as Janus electrodes of advanced potassium-ion hybrid capacitor. ACS Appl Mater Interfaces. 2021;13(25):29511. https://doi.org/10.1021/acsami.1c04278.

    Article  CAS  Google Scholar 

  92. Liu HX, Zhang WL, Song Y, Li LL, Zhang CW, Wang GK. Superior rate mesoporous carbon sphere array composite via intercalation and conversion coupling mechanisms for potassium-ion capacitors. Adv Funct Mater. 2021;31(50):2107728. https://doi.org/10.1002/adfm.202107728.

    Article  CAS  Google Scholar 

  93. Wang GR, Li YP, Liu Y, Jiao SH, Peng B, Li J, Yu L, Zhang GQ. Nest-like TiO2-nitrogen- doped-carbon hybrid nanostructures as superior host for potassium-ion hybrid capacitors. Chem Eng J. 2021;417:127977. https://doi.org/10.1016/j.cej.2020.127977.

    Article  CAS  Google Scholar 

  94. Shen Q, Jiang PJ, He HC, Feng YH, Cai Y, Lei DN, Cai MQ, Zhang M. Designing g-C3N4/N-rich carbon fiber composites for high-performance potassium-ion hybrid capacitors. Energy Environ Mater. 2020;4(4):638. https://doi.org/10.1002/eem2.12148.

    Article  CAS  Google Scholar 

  95. Qiu DP, Guan JY, Li M, Kang CH, Wei JY, Wang F, Yang R. Cucurbit[6]uril-derived nitrogen-doped hierarchical porous carbon confined in graphene network for potassium-ion hybrid capacitors. Adv Sci. 2020;7(20):2001681. https://doi.org/10.1002/advs.202001681.

    Article  CAS  Google Scholar 

  96. Dong LB, Ma XP, Li Y, Zhao L, Liu WB, Cheng JY, Xu CJ, Li BH, Yang QH, Kang FY. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018;13:96. https://doi.org/10.1016/j.ensm.2018.01.003.

    Article  Google Scholar 

  97. Cui FZ, Liu ZC, Ma DL, Liu LL, Huang T, Zhang PP, Tan DM, Wang FX, Jiang GF, Wu YP. Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem Eng J. 2021;405: 127038. https://doi.org/10.1016/j.cej.2020.127038.

    Article  CAS  Google Scholar 

  98. Zhang PP, Li Y, Wang G, Wang FX, Yang S, Zhu F, Zhuang XD, Schmidt OG, Feng XL. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv Mater. 2019;31(3):1806005. https://doi.org/10.1002/adma.201806005.

    Article  CAS  Google Scholar 

  99. Lee YG, An GH. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl Mater Inter. 2020;12(37):41342. https://doi.org/10.1021/acsami.0c10512.

    Article  CAS  Google Scholar 

  100. Huang LQ, Xiang Y, Luo MW, Zhang Q, Zhu H, Shi KY, Zhu SP. Hierarchically porous carbon with heteroatom doping for the application of Zn-ion capacitors. Carbon. 2021;185:1. https://doi.org/10.1016/j.carbon.2021.09.019.

    Article  CAS  Google Scholar 

  101. Zhu XQ, Guo FJ, Yang Q, Mi HY, Yang CC, Qiu JS. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework. J Power Sources. 2021;506: 230224. https://doi.org/10.1016/j.jpowsour.2021.230224.

    Article  CAS  Google Scholar 

  102. Zhang YM, Wang ZP, Li DP, Sun Q, Lai KR, Li KK, Yuan QH, Liu XJ, Ci LJ. Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. J Mater Chem A. 2020;8(43):22874. https://doi.org/10.1039/D0TA08577D.

    Article  CAS  Google Scholar 

  103. Wang S, Wang Q, Zeng W, Wang M, Ruan L, Ma Y. A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 2019;11:70. https://doi.org/10.1007/s40820-019-0301-1.

    Article  Google Scholar 

  104. Zhang XS, Pei ZX, Wang CJ, Yuan ZW, Wei L, Pan YQ, Mahmood A, Shao Q, Chen Y. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small. 2019;15(47):1903817. https://doi.org/10.1002/smll.201903817.

    Article  CAS  Google Scholar 

  105. Yin J, Zhang WL, Alhebshi NA, Salah N, Alshareef HN. Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv Energy Mater. 2021;11(21):2100201. https://doi.org/10.1002/aenm.202100201.

    Article  CAS  Google Scholar 

  106. Liu PG, Liu WF, Huang YP, Li PL, Yan J, Liu KY. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020;25:858. https://doi.org/10.1016/j.ensm.2019.09.004.

    Article  CAS  Google Scholar 

  107. Guo DF, Li ZJ, Wang DZ, Sun M, Wang HY. Design and synthesis of zinc-activated CoxNi2-xP/graphene anode for high-performance zinc ion storage device. Chemsuschem. 2021;14(10):2205. https://doi.org/10.1002/cssc.202100285.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51872005, 52072002 and 22108003), the Natural Science Foundation of Anhui Provincial Education Department (No. KJ2021A0401), WanJiang Scholar Program, and Anhui International Research Center of Energy Materials Green Manufacturing and Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Zhou Yuan or Xiao-Jun He.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Hu, HY., Li, HQ. et al. Advanced carbon-based materials for Na, K, and Zn ion hybrid capacitors. Rare Met. 42, 719–739 (2023). https://doi.org/10.1007/s12598-022-02154-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02154-3

Keywords

Navigation