Skip to main content

Advertisement

Log in

A low-carbon strategy for revival of degraded single crystal LiNi0.6Co0.2Mn0.2O2

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Single crystal LiNi0.6Co0.2Mn0.2O2 is currently widely used due to the outstanding cycle stability and safety. However, its sensitivity to the environment and the high residual alkali makes the electrochemical performance and processing property severely degraded after long-term storage, especially for the Ni-rich single crystal material. Therefore, it is highly urgent to develop a cost-effective strategy for the revival of degraded Ni-rich cathode materials. Here, a low-carbon strategy is proposed to revive the degraded single crystal LiNi0.6Co0.2Mn0.2O2 (SCNCM622) through water washing. The solid–liquid reaction mechanism of SCNCM622 and water was revealed and the strong dependence of the recovery effect on the washing time was clarified. Under optimized conditions, the sample with a washing time of 24 h shows 31.2% reduction in viscosity, 18.4% improvement in discharge capacity, 15.3% enhancement in cycle life, and excellent rate performance compared to the blank sample. Therefore, this strategy can achieve higher utilization of single crystal Ni-based cathode materials with a lower cost.

Graphical abstract

摘要

单晶LiNi0.6Co0.2Mn0.2O2正极材料的无晶界特性赋予其杰出的循环性与安全性, 因而在高性能锂离子动力电池领域获得广泛采用。然而, 小粒径与高残碱共同导致的表面高敏感性使其在长期储存后的电化学性能和加工性能面临严重退化, 尤其是应用于超高比能量密度的单晶富镍材料体系。因此, 迫切需要开发一种简单有效且成本可控的策略来修复失效的单晶富镍正极材料。本文提出了一种基于水洗且面向工业应用的低碳策略来 “再生”存储劣化的单晶LiNi0.6Co0.2Mn0.2O2 (SCNCM622)正极材料。阐明了SCNCM622与水的固液反应机制, 并且明确了劣化单晶正极材料性能修复效果与洗涤时长的强依赖关系。优化条件下, 即经过24小时洗涤后, 劣变样品的浆料粘度降低了31.2%, 放电容量提升了18.4%, 循环寿命提高了15.3%, 并展现出优异的倍率性能。因此, 该策略有望实现单晶镍基正极材料的 “降本增效”。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gallagher KS, Zhang F, Orvis R, Rissman J, Liu Q. Assessing the policy gaps for achieving China’s climate targets in the Paris Agreement. Nat Commun. 2019;10(1):1256. https://doi.org/10.1038/s41467-019-09159-0.

    Article  CAS  Google Scholar 

  2. Kwade A, Haselrieder W, Leithoff R, Modlinger A, Dietrich F, Droeder K. Current status and challenges for automotive battery production technologies. Nat Energy. 2018;3(4):290. https://doi.org/10.1038/s41560-018-0130-3.

    Article  Google Scholar 

  3. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3(4):279. https://doi.org/10.1038/s41560-018-0108-1.

    Article  Google Scholar 

  4. Li H, Li J, Zaker N, Zhang N, Botton GA, Dahn JR. Synthesis of single crystal LiNi0.88Co0.09Al0.03O2 with a two-step lithiation method. J Electrochem Soc. 2019;166(10):A1956. https://doi.org/10.1149/2.0681910jes.

    Article  CAS  Google Scholar 

  5. Weber R, Fell CR, Dahn JR, Hy S. Operando X-ray diffraction study of polycrystalline and single-crystal LixNi0.5Mn0.3Co0.2O2. J Electrochem Soc. 2017;164(13):A2992. https://doi.org/10.1149/2.0441713jes.

    Article  CAS  Google Scholar 

  6. Liu H, Yang Y, Zhang J. Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. J Power Sources. 2006;162(1):644. https://doi.org/10.1016/j.jpowsour.2006.07.028.

    Article  CAS  Google Scholar 

  7. Kong X, Zhang Y, Peng S, Zeng J, Zhao J. Superiority of single-crystal to polycrystalline LiNixCoyMn1-x-yO2 cathode materials in storage behaviors for lithium-ion batteries. ACS Sustain Chem Eng. 2020;8(39):14938. https://doi.org/10.1021/acssuschemeng.0c05011.

    Article  CAS  Google Scholar 

  8. Xiao W, Nie Y, Miao C, Wang J, Tan Y, Wen M. Structural design of high-performance Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials enhanced by Mg2+ doping and Li3PO4 coating for lithium ion battery. J Colloid Interface Sci. 2022;607:1071. https://doi.org/10.1016/j.jcis.2021.09.067.

    Article  CAS  Google Scholar 

  9. Wang J, Nie Y, Miao C, Tan Y, Wen M, Xiao W. Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+ and Ti4+ co-doping for lithium-ion batteries. J Colloid Interface Sci. 2021;601:853. https://doi.org/10.1016/j.jcis.2021.05.167.

    Article  CAS  Google Scholar 

  10. Jung R, Morasch R, Karayaylali P, Phillips K, Maglia F, Stinner C, Yang SH, Gasteiger HA. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J Electrochem Soc. 2018;165(2):A132. https://doi.org/10.1149/2.0401802jes.

    Article  CAS  Google Scholar 

  11. Li W, Song B, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev. 2017;46(10):3006. https://doi.org/10.1039/C6CS00875E.

    Article  CAS  Google Scholar 

  12. Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc. 2016;164(1):A5019. https://doi.org/10.1149/2.0251701jes.

    Article  CAS  Google Scholar 

  13. Ning R, Yuan K, Zhang K, Shen C, Xie K. A scalable snowballing strategy to construct uniform rGO-wrapped LiNi0.8Co0.1Mn0.1O2 with enhanced processability and electrochemical performance. Appl Surf Sci. 2021;542(15):148663. https://doi.org/10.1016/j.apsusc.2020.148663.

    Article  CAS  Google Scholar 

  14. Ouyang L. The effect of solid content on the rheological properties and microstructures of a Li-ion battery cathode slurry. RSC Adv. 2020;10(33):19360. https://doi.org/10.1039/D0RA02651D.

    Article  CAS  Google Scholar 

  15. Seong WM, Cho KH, Park JW, Park H, Eum D, Lee MH, Kim S, Lim J, Kang K. Controlling residual lithium in high-nickel (>90%) lithium layered oxides for cathodes in lithium-ion batteries. Angew Chem Int Ed. 2020;59(42):18662. https://doi.org/10.1002/anie.202007436.

    Article  CAS  Google Scholar 

  16. Hu D, Su Y, Chen L, Li N, Bao L, Lu Y, Zhang Q, Wang J, Chen S, Wu F. The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries. J Energy Chem. 2021;58:1. https://doi.org/10.1016/j.jechem.2020.09.031.

    Article  CAS  Google Scholar 

  17. Huang B, Liu D, Qian K, Zhang L, Zhou K, Liu Y, Kang F, Li B. A simple method for the complete performance recovery of degraded Ni-rich LiNi0.70Co0.15Mn0.15O2 cathode via surface reconstruction. ACS Appl Mater Interfaces. 2019;11(15):14076. https://doi.org/10.1021/acsami.8b22529.

    Article  CAS  Google Scholar 

  18. Lv C, Li Z, Ren X, Li K, Ma J, Duan X. Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method. J Mater Chem A. 2021;9(7):3995. https://doi.org/10.1039/D0TA10378K.

    Article  CAS  Google Scholar 

  19. Zhang J, Tan X, Guo L, Jiang Y, Liu S, Wang H, Kang X, Chu W. Origin of performance differences of nickel-rich LiNi0.9Mn0.1O2 cathode materials synthesized in oxygen and air. Energy Technol. 2019;7(3):1800752. https://doi.org/10.1002/ente.201800752.

    Article  CAS  Google Scholar 

  20. Su Y, Li L, Chen G, Chen L, Li N, Lu Y, Bao L, Chen S, Wu F. Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials. Chin J Chem. 2021;39(1):189. https://doi.org/10.1002/cjoc.202000386.

    Article  CAS  Google Scholar 

  21. Hamam I, Zhang N, Liu A, Johnson MB, Dahn JR. Study of the reactions between Ni-rich positive electrode materials and aqueous solutions and their relation to the failure of Li-ion cells. J Electrochem Soc. 2020;167(13):130521. https://doi.org/10.1149/1945-7111/abb9cd.

    Article  CAS  Google Scholar 

  22. Yow ZF, Oh YL, Gu W, Rao RP, Adams S. Effect of Li+/H+ exchange in water treated Ta-doped Li7La3Zr2O12. Solid State Ionics. 2016;292:122. https://doi.org/10.1016/j.ssi.2016.05.016.

    Article  CAS  Google Scholar 

  23. Huang X, Duan J, He J, Rao RP, Adams S. Ions transfer behavior during water washing for LiNi0.815Co0.15Al0.035O2: role of excess lithium. Mater Today Energy. 2020;17:100440. https://doi.org/10.1016/j.mtener.2020.100440.

    Article  Google Scholar 

  24. Bauer W, Nötzel D. Rheological properties and stability of NMP based cathode slurries for lithium ion batteries. Ceram Int. 2014;40(3):4591. https://doi.org/10.1016/j.ceramint.2013.08.137.

    Article  CAS  Google Scholar 

  25. Yuan K, Li N, Ning R, Shen C, Hu N, Bai M, Zhang K, Yian Z, Shao L, Hu Z, Xu X, Yu T, Xie K. Stabilizing surface chemical and structural Ni-rich cathode via a non-destructive surface reinforcement strategy. Nano Energy. 2020;78:105239. https://doi.org/10.1016/j.nanoen.2020.105239.

    Article  CAS  Google Scholar 

  26. Wang JH, Wang Y, Guo YZ, Liu CW, Dan LL. Electrochemical characterization of AlPO4 coated LiNi1/3Co1/3Mn1/3O2 cathode materials for high temperature lithium battery application. Rare Met. 2021;40(1):78. https://doi.org/10.1007/s12598-014-0247-x.

    Article  CAS  Google Scholar 

  27. Xu S, Du C, Xu X, Han G, Zuo P, Cheng X, Ma Y, Yin G. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim Acta. 2017;248(10):534. https://doi.org/10.1016/j.electacta.2017.07.169.

    Article  CAS  Google Scholar 

  28. Hu C, Li Z, Guo J, Du Y, Wang X, Liu X, Yi T. Synthesis and electrochemical properties of Li[NixCoyMn1-x-y]O2 (x, y= 2/8, 3/8) cathode materials for lithium ion batteries. Rare Met. 2009;28(1):43. https://doi.org/10.1007/s12598-009-0009-3.

    Article  CAS  Google Scholar 

  29. Shu J, Ma R, Shao L, Shui M, Wu K, Lao M, Wang D, Long Y, Ren Y. In-situ X-ray diffraction study on the structural evolutions of LiNi0.5Co0.3Mn0.2O2 in different working potential windows. J Power Sources. 2014;245(1):7. https://doi.org/10.1016/j.jpowsour.2013.06.049.

    Article  CAS  Google Scholar 

  30. Yuan K, Ning R, Bai M, Hu N, Zhang K, Gu J, Li Q, Huan Y, Shen C, Xie K. Prepotassiated V2O5 as the cathode material for high-voltage potassium-ion batteries. Energy Technol. 2020;8(1):1900796. https://doi.org/10.1002/ente.201900796.

    Article  CAS  Google Scholar 

  31. Foix D, Sathiya M, McCalla E, Tarascon JM, Gonbeau D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J Phys Chem C. 2016;120(2):862. https://doi.org/10.1021/acs.jpcc.5b10475.

    Article  CAS  Google Scholar 

  32. Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827. https://doi.org/10.1038/nmat3699.

    Article  CAS  Google Scholar 

  33. Peng J, Li Y, Chen Z, Liang G, Hu S, Zhou T, Zheng F, Pan Q, Wang H, Li Q, Liu J, Guo Z. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide. ACS Nano. 2021;15(7):11607. https://doi.org/10.1021/acsnano.1c02023.

    Article  CAS  Google Scholar 

  34. Wang MJ, Shao AF, Yu FD, Sun G, Gu DM, Wang ZB. Simple water treatment strategy to optimize the Li2MnO3 activation of lithium-rich cathode Materials. ACS Sustain Chem Eng. 2019;7(15):12825. https://doi.org/10.1021/acssuschemeng.9b01719.

    Article  CAS  Google Scholar 

  35. Wang MJ, Yu FD, Sun G, Gu DM, Wang ZB. Optimizing the structural evolution of Li-rich oxide cathode materials via microwave-assisted pre-activation. ACS Appl Energy Mater. 2018;1(8):4158. https://doi.org/10.1021/acsaem.8b00812.

    Article  CAS  Google Scholar 

  36. Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D, Prakash AS, Doublet ML, Hemalatha K, Tarascon JM. High performance Li2Ru1yMnyO3 (0.2≤ y ≤08) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater. 2013;25(7):1121. https://doi.org/10.1021/cm400193m.

    Article  CAS  Google Scholar 

  37. Liu W, Li X, Hao Y, Xiong D, Shan H, Wang J, Xiao W, Yang H, Yang H, Kou L, Tian Z, Shao L, Zhang C. Functional passivation interface of LiNi0.8Co0.1Mn0.1O2 toward superior lithium storage. Adv Funct Mater. 2021;31(13):2008301. https://doi.org/10.1002/adfm.202008301.

    Article  CAS  Google Scholar 

  38. Zhang X, Hu G, Cao Y, Peng Z, Wang W, Tan C, Wang Y, Du K. A facile in-situ coating strategy for Ni-rich cathode materials with improved electrochemical performance. Electrochim Acta. 2021;383(1):138297. https://doi.org/10.1016/j.electacta.2021.138297.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science, Technology, and Innovation Commission of Shenzhen Municipality (No. JCYJ20180508151856806), the National Natural Science Foundation of China (No. 51974256), the Outstanding Young Scholars of Shaanxi (No. 2019JC-12), the Key R&D Program of Shanxi (No. 2019ZDLGY04-05), the National Natural Science Foundation of Shaanxi (Nos. 2019JLZ-01 and 2019JLM-29), the Fundamental Research Funds for the Central Universities (Nos. 19GH020302 and 3102019JC005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Shen, Xiang-Gong Zhang or Ke-Yu Xie.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 166 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Ning, RQ., Zhou, LJ. et al. A low-carbon strategy for revival of degraded single crystal LiNi0.6Co0.2Mn0.2O2. Rare Met. 42, 459–470 (2023). https://doi.org/10.1007/s12598-022-02147-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02147-2

Keywords

Navigation