Skip to main content

Advertisement

Log in

Microstructure and properties of gradient nitrided layer on Ti6Al4V alloys

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The vacuum electromagnetic induction nitriding technology was applied to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy, which possesses TiN and α-Ti (N) phases. Moreover, transmission electron microscopy was conducted to confirm the presence of numerous high-density stacking faults caused by TiN and Ti2N phases distributed on the surface of the alloy, along with a large number of basal stacking faults inside. A high-density stacking fault led to serious distortion of lattice fringes. Lattice and numerous edge dislocations caused by defects were observed in the subsurface layer. For the surface layer, the Vickers hardness reached HV0.25 1211.30 and the residual compressive stress increased, while the nano-hardness increased to 14.07 from 5.31 GPa in the substrate. The micrometre scratch test results indicated that the plasticity and hardness of the nitrided layer changed in a gradient. The 50-μm effective hardened layer depth and surface compressive stress of the Ti6Al4V alloy were enhanced by the stacking faults.

Graphical abstract

摘要

采用真空电磁感应渗氮技术(VEINT), 在Ti6Al4V 合金表面制备具有梯度结构的氮化层, 该渗氮层由TiN 相和α-Ti(N)相组成, TEM 观测到表层分布有大量由TiN 和Ti2N 相所引起高密度层错, 其内部可看见大量的基面层错, 高密度的层错引起晶格条纹发生严重的扭曲;次表层观察到缺陷造成的晶格错排和大量的刃位错。表层维氏硬度达到HV0.25 1211.30, 且表面残余压应力增大, 纳米硬度从基体5.31 GPa 呈渐增至表层14.07 GPa, 微米划痕测试发现氮化层塑性和硬度呈梯度变化, 有效硬化层深度约为50 μm, 层错能提高了Ti6Al4V 合金表面压应力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim: Wiley. 2003.1 https://doi.org/10.1002/3527602119.

  2. Man HC, Bai M, Cheng FT. Laser difusion nitriding of Ti-6Al-4V for improving hardness and wear resistance. Appl Surf Sci. 2011;258(1):436. https://doi.org/10.1016/j.apsusc.2011.08.114.

    Article  CAS  Google Scholar 

  3. Feng ZH, Sun XY, Han PB, Fu H, Dong HC, Guo S, Su R, Li JH. Microstructure and microhardness of a novel TiZrAlV alloy by laser gas nitriding at different laser powers. Rare Met. 2020;39(3):270. https://doi.org/10.1007/s12598-019-01362-8.

    Article  CAS  Google Scholar 

  4. Yildiz F, Yetim AF, Alsaran A, Çelik A. Plasma nitriding behavior of Ti6Al4V orthopedic alloy. Surf Coat Technol. 2008;202(11):2471. https://doi.org/10.1016/j.surfcoat.2007.08.004.

    Article  CAS  Google Scholar 

  5. Morgiel J, Szymkiewicz K, Maj Ł, Tarnowski M, Wierzchońet T. TEM studies of low temperature cathode-plasma nitrided Ti6Al7Nb alloy. Surf Coat Technol. 2019;359:183. https://doi.org/10.1016/j.surfcoat.2018.12.071.

    Article  CAS  Google Scholar 

  6. Tahara M, Kanaya T, Kim HY, Inamura T, Hosoda H, Miyazaki S. Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy. Acta Mater. 2014;80:317. https://doi.org/10.1016/j.actamat.2014.07.012.

    Article  CAS  Google Scholar 

  7. Long W, Ou MG, Mao XQ, Liang YL. In situ deformation behavior of TC21 titanium alloy with different α morphologies (equiaxed/lamellar). Rare Met. 2021;40(5):1173. https://doi.org/10.1007/s12598-020-01657-1.

    Article  CAS  Google Scholar 

  8. Li GR, Wang FF, Wang HM, Cheng JF. Microstructure and mechanical properties of TC4 titanium alloy subjected to high static magnetic field. Mater Sci Forum. 2017;898:345. https://doi.org/10.4028/www.scientific.net/MSF.898.345.

    Article  Google Scholar 

  9. Li GR, Li YM, Wang FF, Wang HM. Microstructure and performance of solid TC4 titanium alloy subjected to the high pulsed magnetic field treatment. J Alloy Compd. 2015;644:750. https://doi.org/10.1016/j.jallcom.2015.04.191.

    Article  CAS  Google Scholar 

  10. Li X, Gagnoud A, Fautrelle Y, Ren ZM, Moreau R, Zhang YD, Esling C. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Mater. 2012;60(8):3321. https://doi.org/10.1016/j.actamat.2012.02.019.

    Article  CAS  Google Scholar 

  11. Ye XX, Tse Zion TH, Tang GY, Li XH, Song GL. Effect of high-energy electropulsing on the phase transition and mechanical properties of two-phase titanium alloy strips. Adv Eng Mater. 2015;17(7):995. https://doi.org/10.1002/adem.201400273.

    Article  CAS  Google Scholar 

  12. Wu Y, Fan RL, Zhou XJ, Chen MH. Microstructure and hot flow stress at 970 °C of various heat-treated Ti2AlNb sheets. Rare Met. 2020;39(6):695. https://doi.org/10.1007/s12598-020-01408-2.

  13. Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski KJ. Influence of C, H, N, and O interstitial atoms on deformation mechanism in titanium-First principles calculations of generalized stacking fault energy. Mater Lett. 2013;94:92. https://doi.org/10.1016/j.matlet.2012.12.002.

    Article  CAS  Google Scholar 

  14. Deng CM, Cheng DH, Zhang H, Wang L, Rong Y, Chen GC. Study on aluminum-copper dissimilar materials by DC magnetic field assisted arc welding-brazing joint. Chin J Rare Met. 2021;45(10):1178.https://doi.org/10.13373/j.cnki.cjrm.xy20060013

    Google Scholar 

  15. Wang HM, Li GR, Li YM, Cui YH, Peng CX, Zheng R, Li PS, Zhao YT. Influence of high magnetic field on β-α phase transformation in TC4 titanium alloy. Adv Mater Res. 2014;941–944:112. https://doi.org/10.4028/www.scientific.net/amr.941-944.112.

    Article  Google Scholar 

  16. Wang L, Liu J, Yang Y, Yang G, Gao Y. Effect of electromagnetic treatment on microstructures and properties of TC11 titanium alloy. Chin J Nonferr Met. 2018;28(5):931. https://doi.org/10.19476/j.ysxb.1004.0609.2018.05.09.

    Article  Google Scholar 

  17. Pohrelyuk I, Morgiel J, Tkachuk O, Szymkiewicz K. Effect of temperature on gas oxynitriding of Ti-6Al-4V alloy. Surf Coat Technol. 2019;360(28):103. https://doi.org/10.1016/j.surfcoat.2019.01.015.

    Article  CAS  Google Scholar 

  18. Fomin A, Voyko A, Fomina M, Mokrousov S, Koshuro V. Functionally graded Ti(C, N) coatings and their production on titanium using solid-state carburization associated with induction heat treatment. Compos Struct. 2020;245:112393. https://doi.org/10.1016/j.compstruct.2020.112393.

    Article  Google Scholar 

  19. Li KM, Song KJ, Guan J, Yang F, Liu J. Tribocorrosion behavior of a Ti6Al4V alloy electromagnetic induction nitride layer in a fluorine-containing solution. Surf Coat Technol. 2020;386:125506. https://doi.org/10.1016/j.surfcoat.2020.125506.

    Article  CAS  Google Scholar 

  20. Fomin A, Koshuro V, Shchelkunov A, Aman A, Fomina M, Kalganova S. Simulation and experimental study of induction heat treatment of titanium disks. Int J Heat Mass Transf. 2020;165:120668. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120668.

    Article  CAS  Google Scholar 

  21. Golovin YI. Magnetoplastic effects in crystals in the context of spin-dependent chemical kinetics. Crystallogr Rep. 2004;49(4):668. https://doi.org/10.1134/1.1780635.

    Article  CAS  Google Scholar 

  22. Golovin YI. Mechanochemical reactions between structural defects in magnetic fields. J Mater Sci. 2004;39:5129. https://doi.org/10.1023/B:JMSC.0000039196.60100.74.

    Article  CAS  Google Scholar 

  23. Sun Q. TEM Investigation on the Deformation Twin in Deformed Hexagonal Close-Packed Matericals. Chongqing: Chongqing University; 2017. 6.

    Google Scholar 

  24. Hsiung LM, Lassila DH. Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys. Acta Mater. 2000;48(20):4851. https://doi.org/10.1016/S1359-6454(00)00287-1.

    Article  CAS  Google Scholar 

  25. Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300(5618):464. https://doi.org/10.1126/science.108195.

    Article  CAS  Google Scholar 

  26. Li Z, Yadav S, Chen YX, Li N, Liu XY, Wang J, Zhang SX, Baldwin JK, Misra A, Mara N. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN. Materials Research Letters. 2017;5(6):426. https://doi.org/10.1080/21663831.2017.1303793.

    Article  CAS  Google Scholar 

  27. Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349. https://doi.org/10.1126/science.1159610.

    Article  CAS  Google Scholar 

  28. Zhang M. The Influence of Thermomechanical Processing (TMP) on the Microstructure and Mechanical Properties of TC21 Titanium alloy. Xi'an: Northwestern Polytechnical University; 2004.3.

  29. Zheng SQ. TEM study of titanium alloy interface phase. Physics examination and testing. 2010;28(4):21. https://doi.org/10.13228/j.boyuan.issn1001-0777.2010.04.003.

  30. Sahoo R, Jha BB, Sahoo TK. Effect of primary alpha phase variation on mechanical behaviour of Ti-6Al-4V alloy. Mater Sci Technol. 2014;31(12):1486. https://doi.org/10.1179/1743284714Y.0000000736.

    Article  CAS  Google Scholar 

  31. Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys. Mater Sci Eng, A. 1999;263(2):11. https://doi.org/10.1016/S0921-5093(98)01169-1.

    Article  Google Scholar 

  32. Lütjering G, Williams JC. Titanium. Edited by Lütjering G, Williams JC. Berlin, Heidelberg: Springer-Verlag; 2007.1. https://doi.org/10.1007/978-3-540-73036-1.

  33. Pohrelyuk I, Morgiel J, Tkachuk O, Szymkiewicz K. Effect of temperature on gas oxynitriding of Ti-6Al-4V alloy. Surf Coat Technol. 2019;360:103. https://doi.org/10.1016/j.surfcoat.2019.01.015.

    Article  CAS  Google Scholar 

  34. Kazantseva N, Krakhmalev P, Thuvander M, Yadroitsev I, Vinogradova N, Ezhov I. Martensitic transformations in Ti-6Al-4V (ELI) alloy manufactured by 3D Printing. Mater Charact. 2018;146:101. https://doi.org/10.1016/j.matchar.2018.09.042.

    Article  CAS  Google Scholar 

  35. Nikolova MP, Nikolova V, Ivanova VL, Valkov S, Petrov P, Apostolova MD. Mechanical properties and in vitro biocompatibility evaluation of TiN/TiO2 coated Ti6Al4V alloy. Mater Today: Proc. 2020;33(4):1781. https://doi.org/10.1016/j.matpr.2020.05.051.

    Article  CAS  Google Scholar 

  36. Menčík J, Munz D, Quandt E, Weppelmann ER, Swain MV. Determination of elastic modulus of thin layers using nanoindentation. J Mater Res. 1997;12(9):2475. https://doi.org/10.1557/jmr.1997.0327.

    Article  Google Scholar 

  37. Hussein MA, Ankah NK, Kumar AM, Azeem MA, Saravanan S, Sorour AA, Aqeeli NA. Mechanical, biocorrosion, and antibacterial properties of nanocrystalline TiN coating for orthopedic applications. Ceram Int. 2020;46(11):18573. https://doi.org/10.1016/j.ceramint.2020.04.164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Science and Technology Foundation of Guizhou Province (No. [2020]1Z041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-Ping Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Li, KM., Liu, XJ. et al. Microstructure and properties of gradient nitrided layer on Ti6Al4V alloys. Rare Met. 42, 651–663 (2023). https://doi.org/10.1007/s12598-022-02122-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02122-x

Keywords

Navigation