Skip to main content
Log in

Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

高容量的 LiNi0.8Co0.1Mn0.1O2 (NCM) 正极对于实现高能量密度全固态锂电池至关重要。然而, 由于NCM正极与常用的硫化物固体电解质之间存在空间电荷层效应, 导致电池性能下降。本工作通过简单的湿化学方法在NCM颗粒表面原位包覆了10 nm 电化学稳定的 Li2ZrO3 (LZO) 层。LZO 包覆层能够缓解电极/电解质界面的副反应, 实现锂离子快速动态传输, 从而显著提高电池性能。采用包覆后的NCM正极和 Li6PS5Cl 电解质的全固态锂电池具有稳定的循环性能, 在室温下, 以 0.1C 电流密度循环300次后容量保持率为 72.2%, 以 0.5C 电流密度循环 600 次后容量保持率为 72.9%。该研究为实现高能量密度全固态锂电池稳定的电极/电解质界面和提高循环性能提供了一种具有前景的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167. https://doi.org/10.1021/ja3091438.

    Article  CAS  Google Scholar 

  2. Chen RS, Li QH, Yu XQ, Chen LQ, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev. 2019;120(14):6820. https://doi.org/10.1021/acs.chemrev.9b00268.

    Article  CAS  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928. https://doi.org/10.1126/science.1212741.

    Article  CAS  Google Scholar 

  4. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587. https://doi.org/10.1021/cm901452z.

    Article  CAS  Google Scholar 

  5. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19. https://doi.org/10.1038/nchem.2085.

    Article  CAS  Google Scholar 

  6. Wang QS, Ping P, Zhao XJ, Chu GQ, Sun JH, Chen CH. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210. https://doi.org/10.1016/j.jpowsour.2012.02.038.

    Article  CAS  Google Scholar 

  7. Wang L, Zhou ZY, Yan X, Hou F, Wen L, Luo WB, Liang J, Dou SX. Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 2018;14:22. https://doi.org/10.1016/j.ensm.2018.02.014.

    Article  Google Scholar 

  8. Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5(3):229. https://doi.org/10.1038/s41578-019-0165-5.

    Article  CAS  Google Scholar 

  9. Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194. https://doi.org/10.1038/nnano.2017.16.

    Article  CAS  Google Scholar 

  10. Manthiram A, Yu XW, Wang SF. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):16. https://doi.org/10.1038/natrevmats.2016.103.

    Article  CAS  Google Scholar 

  11. Xia SX, Wu XS, Zhang ZC, Cui Y, Liu W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem. 2019;5(4):753. https://doi.org/10.1016/j.chempr.2018.11.013.

    Article  CAS  Google Scholar 

  12. Lin DC, Liu YY, Chen W, Zhou GM, Liu K, Dunn B, Cui Y. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 2017;17(6):3731. https://doi.org/10.1021/acs.nanolett.7b01020.

    Article  CAS  Google Scholar 

  13. Ding JF, Xu R, Yan C, Xiao Y, Liang YR, Yuan H, Huang JQ. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chin Chem Lett. 2020;31(9):2339. https://doi.org/10.1016/j.cclet.2020.03.015.

    Article  CAS  Google Scholar 

  14. Cheng YF, Chen JB, Chen YM, Ke X, Li J, Yang Y, Shi ZC. Lithium host: advanced architecture components for lithium metal anode. Energy Storage Mater. 2021;38:276. https://doi.org/10.1016/j.ensm.2021.03.008.

    Article  Google Scholar 

  15. Liu GZ, Weng W, Zhang ZH, Wu LP, Yang J, Yao XY. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Lett. 2020;20(9):6660. https://doi.org/10.1021/acs.nanolett.0c02489.

    Article  CAS  Google Scholar 

  16. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A lithium superionic conductor. Nat Mater. 2011;10(9):682. https://doi.org/10.1038/nmat3066.

    Article  CAS  Google Scholar 

  17. Wang ZY, Shen L, Deng SG, Cui P, Yao XY. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater. 2021;33(25):2100353. https://doi.org/10.1002/adma.202100353.

    Article  CAS  Google Scholar 

  18. Buannic L, Orayech B, López Del Amo JM, Carrasco J, Katcho NA, Aguesse F, Manalastas W, Zhang W, Kilner J, Llordés A. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater. 2017;29(4):1769. https://doi.org/10.1021/acs.chemmater.6b05369.

    Article  CAS  Google Scholar 

  19. Yang J, Liu GZ, Avdeev M, Wan HL, Han FD, Shen L, Zou ZY, Shi SQ, Hu YS, Wang CS, Yao XY. Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett. 2020;5(9):2835. https://doi.org/10.1021/acsenergylett.0c01432.

    Article  CAS  Google Scholar 

  20. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016;1:16030. https://doi.org/10.1038/nenergy.2016.30.

    Article  CAS  Google Scholar 

  21. Rao RP, Adams S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi A Appl Mat. 2011;208(8):1804. https://doi.org/10.1002/pssa.201001117.

    Article  CAS  Google Scholar 

  22. Shen ZC, Cheng YF, Sun SH, Ke X, Liu LY, Shi ZC. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy. 2021;3(3):482. https://doi.org/10.1002/cey2.108.

    Article  CAS  Google Scholar 

  23. Liao RX, Shen ZC, Xie WH, Zhong JW, Shi ZC. Research progress of solid polymer electrolyte/high voltage cathode interphase stability. Sci Sin Chim. 2022;52(1):38. https://doi.org/10.1360/SSC-2021-0101.

    Article  Google Scholar 

  24. Lu JY, Ke CZ, Gong ZL, Li DP, Ci LJ, Zhang L, Zhang QB. Application of in-situ characterization techniques in all-solid-state lithium batteries. Acta Phys Sin. 2021;70(19): 198102. https://doi.org/10.7498/aps.70.20210531.

    Article  Google Scholar 

  25. Zhang QB, Gong ZL, Yong Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys Sin. 2020;69(22): 228803. https://doi.org/10.7498/aps.69.20201581.

    Article  CAS  Google Scholar 

  26. Wang JH, Wang Y, Guo YZ, Liu CW, Dan LL. Electrochemical characterization of AlPO4 coatedLiNi1/3Co1/3Mn1/3O2 cathode materials for high temperature lithium battery application. Rare Met. 2021;40(1):78. https://doi.org/10.1007/s12598-014-0247-x.

    Article  CAS  Google Scholar 

  27. Li LS, Duan HH, Li J, Zhang L, Deng YF, Chen GH. Toward high performance all-solid-state lithium batteries with high-voltage cathode materials: design strategies for solid electrolytes, cathode interfaces, and composite electrodes. Adv Energy Mater. 2021;11(28):32. https://doi.org/10.1002/aenm.202003154.

    Article  CAS  Google Scholar 

  28. Ren HT, Zhang ZQ, Zhang JZ, Peng LF, He ZY, Yu M, Yu C, Zhang L, Xie J, Cheng SJ. Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives. Rare Met. 2022;41(1):106. https://doi.org/10.1007/s12598-021-01804-2.

    Article  CAS  Google Scholar 

  29. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205. https://doi.org/10.1007/s12598-020-01369-6.

    Article  CAS  Google Scholar 

  30. Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater. 2009;21(45):4593. https://doi.org/10.1002/adma.200901710.

    Article  CAS  Google Scholar 

  31. Liu GZ, Lu Y, Wan HL, Weng W, Cai LT, Li Z, Que XC, Liu HJ, Yao XY. Passivation of the cathode–electrolyte interface for 5 V-class all-solid-state batteries. ACS Appl Mater Inter. 2020;12(25):28083. https://doi.org/10.1021/acsami.0c03610.

    Article  CAS  Google Scholar 

  32. Bian XF, Fu Q, Bie XF, Yang PL, Qiu HL, Pang Q, Chen G, Du F, Wei YJ. Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim Acta. 2015;174:875. https://doi.org/10.1016/j.electacta.2015.06.085.

    Article  CAS  Google Scholar 

  33. Thackeray MM, Johnson CS, Kim JS, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA. ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries. Electrochem Commun. 2003;5(9):752. https://doi.org/10.1016/S1388-2481(03)00179-6.

    Article  CAS  Google Scholar 

  34. Ni JF, Zhou HH, Chen JT, Zhang XX. Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating. Electrochim Acta. 2008;53(7):3075. https://doi.org/10.1016/j.electacta.2007.11.026.

    Article  CAS  Google Scholar 

  35. Xu Y, Liu Y, Lu ZP, Wang HY, Sun DQ, Yang G. The preparation and role of Li2ZrO3 surface coating LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion batteries. Appl Surf Sci. 2016;361:150. https://doi.org/10.1016/j.apsusc.2015.11.156.

    Article  CAS  Google Scholar 

  36. Wang WL, Yin ZL, Wang JP, Wang ZX, Li XH, Guo HJ. Effect of heat-treatment on Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 and its high voltage electrochemical performance. J Alloys Compd. 2015;651:737. https://doi.org/10.1016/j.jallcom.2015.08.114.

    Article  CAS  Google Scholar 

  37. Tao YC, Chen SJ, Liu D, Peng G, Yao XY, Xu XX. Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J Electrochem Soc. 2016;163(2):A96. https://doi.org/10.1149/2.0311602jes.

    Article  CAS  Google Scholar 

  38. Yin JY, Yao XY, Peng G, Yang J, Huang Z, Liu D, Tao YC, Xu XX. Influence of the Li–Ge–P–S based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries. Solid State Ionics. 2015;274:8. https://doi.org/10.1016/j.ssi.2015.02.014.

    Article  CAS  Google Scholar 

  39. Zhu YZ, He XF, Mo YF. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Inter. 2015;7(42):23685. https://doi.org/10.1021/acsami.5b07517.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. U1964205, U21A2075 and 51872303), Ningbo S&T Innovation 2025 Major Special Programme (Nos. 2019B10044 and 2021Z122), Zhejiang Provincial Key R&D Program of China (No. 2022C01072) and the Youth Innovation Promotion Association CAS (No. Y2021080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-Yin Yao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Liu, ZQ., Weng, W. et al. Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries. Rare Met. 41, 3639–3645 (2022). https://doi.org/10.1007/s12598-022-02086-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02086-y

Navigation