Skip to main content
Log in

Facile synthesis of transition metal carbide nanoparticles embedded in mesoporous carbon nanosheets for hydrogen evolution reaction

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Transition metal carbides (TMC) modified by mesoporous carbon nanosheets (MCNSs) with high activity, fast electron/ion transfer and long durability are considered as promising electrocatalysts for hydrogen evolution reaction (HER). However, most current synthesis methods involve in multistep, long duration and low output. In this work, Cr3C2, WC and VC nanoparticles embedded in mesoporous carbon nanosheets (TMC-NPs@MCNSs) were fabricated via a template-free and time-saving route by solution combustion synthesis. All TMC-NPs@MCNSs displayed good electrocatalytic activity for HER, and the Tafel plots of Cr3C2-NPs@MCNS, VC-NPs@MCNS and WC-NPs@MCNS electrocatalysts were 85, 77 and 56 mV·dec−1, respectively. WC-NPs@MCNSs exhibited lower Tafel slope and overpotentials of 137 mV at ŋ10 (a current density of 10 mA·cm−2), which could be ascribed to mesoporous structure, smaller particles size and strong electron interaction between W and C that promoted electron/ion transfer, maintained the structure integrity and enhanced the HER activity.

Graphical abstract

摘要

以中孔碳纳米片修饰的过渡金属碳化物以其较高的反应活性、电子传输速率以及电解稳定性可作为替代铂系贵金属催化电极的材料之一。然而, 目前高催化活性、高稳定性电极材料的制备方法普遍合成过程长、能耗高、产率低。在本文中, 采用燃烧合成法分别合成了Cr3C2、VC、WC与中孔碳纳米片复合材料 (TMC-NPs@MCNSs)。三种材料均显示出较高的电催化反应活性, Cr3C2-NPs@MCNSs, VC-NPs@MCNSs和 WC-NPs@MCNSs的塔菲尔斜率分别为85, 77和56 mV·dec-1。其中, 当电流密度为10mA·cm-2时, WC-NPs@MCNSs对应的过电位值为137 mV, 表现出更好的析氢性能。优异的电催化性能与碳纳米片中孔结构、较小粒径、WC化学性质紧密相关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Sun J, Zhong D, Gamelin D. Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ Sci. 2010;3:1252.

    Article  CAS  Google Scholar 

  2. Chen X, Zhang H, Zhang Y. Transition metal doped graphene-like germanium carbide: screening of high performance electrocatalysts for oxygen reduction, oxygen evolution, or hydrogen evolution. Colloid Surf A. 2021;630:127628.

    Article  CAS  Google Scholar 

  3. Huang C, Miao X, Pi C, Gao B, Zhang X, Qin P, Huo K, Peng X, Chu PK. Mo2C/VC heterojunction embedded in graphitic carbon network: an advanced electrocatalyst for hydrogen evolution. Nano Energy. 2019;60:520.

    Article  CAS  Google Scholar 

  4. Zou X, Zhang Y. ChemInform abstract: noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44:5148.

    Article  CAS  Google Scholar 

  5. Popczun EJ, Mckone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(25):9267.

    Article  CAS  Google Scholar 

  6. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013;13(12):6222.

    Article  CAS  Google Scholar 

  7. Tackett B, Sheng W, Chen J. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule. 2017;1(2):253.

    Article  CAS  Google Scholar 

  8. Cao Z, Qin M, Zuo C, Gu Y, Jia B. Facile route for synthesis of mesoporous graphite encapsulated iron carbide/iron nanosheet composites and their electrocatalytic activity. J Colloid Interf Sci. 2017;491:55.

    Article  CAS  Google Scholar 

  9. Emin S, Altinkaya C, Semerci A, Okuyucu H, Yildiz A, Stefanov P. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution. Appl Catal B Environ. 2018;236(15):147.

    Article  CAS  Google Scholar 

  10. Shi Z, Wang Y, Lin H, Zhang H, Shen M, Xie S, Zhang Y, Gao Q, Tang Y. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J Mater Chem A. 2016;4:6006.

    Article  CAS  Google Scholar 

  11. Fan H, Yu H, Zhang Y, Zheng Y, Luo Y, Dai Z, Li B, Zong Y, Yan Q. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew. Chem. Int. Ed. 2017;56(41):12566.

    Article  CAS  Google Scholar 

  12. Peng X, Hu L, Wang L, Zhang X, Fu J, Huo K, Lee LYS, Wong KY, Chu PK. Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy. 2016;26:603.

    Article  CAS  Google Scholar 

  13. Xiong K, Li L, Zhang L, Ding W, Peng L, Wang Y, Chen S, Tan S, Wei Z. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. J Mater Chem A. 2015;3:1863.

    Article  CAS  Google Scholar 

  14. Wan C, Leonard BM. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem Mater. 2015;27(12):4281.

    Article  CAS  Google Scholar 

  15. Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Nanowires: cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater. 2016;26(31):5581.

    Article  CAS  Google Scholar 

  16. Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed. 2014;53(14):3675.

    Article  CAS  Google Scholar 

  17. Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed. 2013;52(1):371.

    Article  CAS  Google Scholar 

  18. Liu Y, Xu XY, Sun PC, Chen TH. N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media. Int J Hydrogen Energy. 2015;40(13):4531.

    Article  CAS  Google Scholar 

  19. Mukasyan AS, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. P Combust Inst. 2007;31(2):1789.

    Article  Google Scholar 

  20. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem Rev. 2016;116(23):14493.

    Article  CAS  Google Scholar 

  21. Li F, Ran J, Jaroniec M, Qiao SZ. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale. 2015;7(42):17590.

    Article  CAS  Google Scholar 

  22. Zhu C, Wang AL, Xiao W, Chao D, Zhang X, Tiep NH, Chen S, Kang J, Wang X, Ding J, Wang J, Zhang H, Fan H. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv Mater. 2018;30(13):1705516.

    Article  Google Scholar 

  23. Eftekhari A. Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy. 2017;42(16):11053.

    Article  CAS  Google Scholar 

  24. Fang B, Kim JH, Kim MS, Yu JS. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Acc Chem Res. 2013;46(7):1397.

    Article  CAS  Google Scholar 

  25. Anjali J, Jose VK, Lee JM. Carbon-based hydrogels: synthesis and their recent energy applications. J Mater Chem A. 2019;7:15491.

    Article  CAS  Google Scholar 

  26. Yu S, Song S, Li R, Fang B. The lightest solid meets the lightest gas: an overview of carbon aerogels and their composites for hydrogen related applications. Nanoscale. 2020;12:19536.

    Article  CAS  Google Scholar 

  27. Prabhu P, Jose V, Lee JM. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter. 2020;2:526.

    Article  Google Scholar 

  28. Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev. 2021;50:1354.

    Article  CAS  Google Scholar 

  29. Wang J, Wang G, Miao S, Li J, Bao X. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discuss. 2014;176:135.

    Article  CAS  Google Scholar 

  30. Zhang H, Ma Z, Duan J, Liu H, Liu G, Wang T, Chang K, Li M, Shi L, Meng X, Wu K, Ye J. Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano. 2016;10(1):684.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52131307, 52130407, 52071013, 52104359, 51774035 and 52174344), the National Key Research and Development Program of China (No. 2021YFB3701900), the Natural Science Foundation Program of Beijing (Nos. 2202031, 2174079 and 2162027), the Science and Technology Program of Hebei (No. 20311001D), the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-19-003C2, FRF-IDRY-19-025, FRF-IDRY-20-022, FRF-TP-20-032A2 and FRF-TP-20-100A1Z), the Scientific and Technological Innovation Foundation of Foshan (No. BK21BE007), the Postdoctoral Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH014) and the Natural Science Foundation Program of Hunan (No. 2021JJ30250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Kun Zhang, Hao-Yang Wu or Ming-Li Qin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, XL., Zhang, HK. et al. Facile synthesis of transition metal carbide nanoparticles embedded in mesoporous carbon nanosheets for hydrogen evolution reaction. Rare Met. 41, 2237–2242 (2022). https://doi.org/10.1007/s12598-022-01991-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01991-6

Navigation