Skip to main content
Log in

Intergranular corrosion of spark plasma sintered 2024 aluminum alloy at different heat treatment states

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

2024 aluminum alloys were consolidated by using spark plasma sintering (SPS) method, and then heat treated by solid solution treatment (SST) and aging treatment (AT) procedures. The average grain size of bulk samples sintered with 5, 20 and 50 μm powders was 3.72, 4.73 and 8.11 μm, respectively. The difference between the average grain size and original powder size was attributed to the recrystallization during short sintering process. The number of the inclusion phases in these samples decreased after SST and increased after subsequent AT. Besides, it was observed that intergranular corrosion (IGC) cracks initiated from stable pits due to the electrochemical inhomogeneity between the intermetallic particles (IMPs) and the aluminum matrix (176.02, 110.83 and 164.80 mV for as-SPS, as-SST and as-AT samples, respectively). Besides, the cracks would propagate along the grain boundaries (GBs) and bypass the IMPs at GBs during propagation. It was revealed that the sample after SST presented the best IGC resistance, and this was ascribed to the reduce of IMPs, both in size and number.

Graphical abstact

摘要

本文采用放电等离子烧结法制备了2024铝合金, 并对铝合金进行固溶和时效热处理, 研究了2024铝合金的晶间腐蚀行为随热处理过程的演变规律。结果表明, 烧结的 2024铝合金的晶间腐蚀敏感性在固溶处理后提升, 而在时效处理后降低。分析表明这是由于固溶处理后的试样中的析出相的数量减少, 尺寸降低。铝合金表面的晶间腐蚀裂纹起源于稳定的点蚀坑, 而点蚀萌生是由于析出相的存在, 析出相的数量减少使得点蚀萌生位点减少。同时, 研究发现裂纹沿晶界拓展, 固溶后试样的晶间腐蚀敏感性降低是由于析出相与铝基体间电势差降低 (烧结后, 固溶后和时效后的电势差分别为: 176.02, 110.83以及164.80 mV), 从而降低了裂纹拓展驱动力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang X, Jiao Y, Yu Y, Liu B, Hashimoto T, Liu H, Dong Z. Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction. Corros Sci. 2019;155:1.

    Article  CAS  Google Scholar 

  2. Hao XL, Zhao N, Jin HH, Ma W, Zhang DH. Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature. Rare Met. 2021;40(4):968.

    Article  CAS  Google Scholar 

  3. Ralston K, Virtanen S, Birbilis N. Effect of processing on grain size and corrosion of AA2024-T3. Corrosion. 2011;67(10):105001.

    Article  Google Scholar 

  4. Song F, Zhang X, Liu S, Tan Q, Li D. The effect of quench rate and overageing temper on the corrosion behaviour of AA7050. Corros Sci. 2014;78(8):276.

    Article  CAS  Google Scholar 

  5. Li XQ, Chen WP, Long Y, Hu LX, Wang ED. Unique microstructure and property of a 2024 aluminum aIloy subjected to upsetting extrusion multiple processing. Rare Met. 2004;23(1):74.

    Google Scholar 

  6. Aydn H, Bayram A, Uguz A, Akay KS. Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state. Mater Des. 2009;30(6):2211.

  7. Khoshnaw FM, Gardi RH. Effect of aging time and temperature on exfoliation corrosion of aluminum alloys 2024–T3 and 7075–T6. Werkst Korros. 2007;58(5):345.

    Article  CAS  Google Scholar 

  8. Xu HB, Sun HB, Yang H, Chi LX, Chen J. Microstructure and properties of joint for stirring brazing of dissimilar Al/Mg alloy during heating processes. Rare Met. 2015;34(4):245.

    Article  CAS  Google Scholar 

  9. Zou XL, Yan H, Chen XH. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment. Trans Nonferrous Metal Soc. 2017;27(10):2146.

    Article  CAS  Google Scholar 

  10. Jia SF, Zhan LH, Zhang J. Influence of solid solution treatment on microstructure and mechanical properties of 2219 aluminium alloy. Mater Res Innov. 2014;18(sup2):52.

    Article  Google Scholar 

  11. Zhang XX, Liu B, Zhou XR, Zhang T, Gao YJ, Dong ZH, Wang JJ, Nilsson J. The influence of room temperature storage on intergranular corrosion susceptibility of AA6082 Al-Mg-Si alloy. Corros Commun. 2021. https://doi.org/10.1016/j.corcom.2021.09.004.

    Article  Google Scholar 

  12. Pan Y, Zhang D, Liu H, Zhuang L, Zhang J. Precipitation hardening and intergranular corrosion behavior of novel Al-Mg-Zn(-Cu) alloys. J Alloy Compd. 2021;853:157199.

    Article  CAS  Google Scholar 

  13. Liu YH, Yan LM, Hou XH, Huang DN, Zhang JB, Shen J. Precipitates and corrosion resistance of an Al-Zn-Mg-Cu-Zr plate with different percentage reduction per passes. Rare Met. 2018;37(5):381.

    Article  CAS  Google Scholar 

  14. Tian W, Li S, Wang B, Liu J, Yu M. Pitting corrosion of naturally aged AA 7075 aluminum alloys with bimodal grain size. Corros Sci. 2016;113(9):1.

    Article  CAS  Google Scholar 

  15. Zhang B, Ma XL. A review—pitting corrosion initiation investigated by TEM. J Mater Sci Technol. 2019;35(7):1455.

    Article  CAS  Google Scholar 

  16. Ilevbare G, Kelly R, Scully J. Role of intermetallic phases in localized corrosion of AA5083. J Electrochem Soc. 2004;151(8):B453.

    Article  CAS  Google Scholar 

  17. Yasakau K, Zheludkevich M, Lamaka S, Ferreira M. Role of intermetallic phases in localized corrosion of AA5083. Electrochim Acta. 2007;52(27):7651.

    Article  CAS  Google Scholar 

  18. Boag A, Taylor R, Muster T, Goodman N, McCulloch D, Ryan C, Route B, Jamieson D, Hughes AE. Stable pit formation on AA2024-T3 in a NaCl environment. Corros Sci. 2010;52(1):90.

    Article  CAS  Google Scholar 

  19. Ghanbari E, Saatchi A, Lei X, Macdonald DD. Studies on pitting corrosion of Al-Cu-Li alloys Part II: breakdown potential and pit initiation. Mater (Basel). 2019;12(11):1786.

    Article  CAS  Google Scholar 

  20. Boag A, Hughes A, Glenn A, Muster T, McCulloch D. Corrosion of AA2024-T3 Part I: localised corrosion of isolated IM particles. Corros Sci. 2011;53(1):17.

    Article  CAS  Google Scholar 

  21. Sun Y, Pan Q, Sun Y, Wang W, Zhuang Z, Wang X, Hu Q. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy. J Alloy Compd. 2019;783(12):329.

    Article  CAS  Google Scholar 

  22. Chang SH, Lee SC, Huang KT, Liang C. Effects of solid-solution treatment on microstructure and mechanical properties of HIP treated alloy 718. Appl Mech Mater. 2011;117–119:1315.

    Article  Google Scholar 

  23. Zhang X, Zhang K, Li X, Deng X, Li Y, Ma M, Shi Y. Effect of solid-solution treatment on corrosion and electrochemical behaviors of Mg-15Y alloy in 3.5 wt.% NaCl solution. J Rare Earth. 2012;30(11):1158.

    Article  Google Scholar 

  24. Xu DK, Birbilis N, Lashansky D, Rometsch PA, Muddle BC. Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: optimisation for corrosion resistance. Corros Sci. 2011;53(1):217.

    Article  CAS  Google Scholar 

  25. Zander D, Schnatterer C, Altenbach C, Chaineux V. Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires. Mater Des. 2015;83(D22):49.

    Article  CAS  Google Scholar 

  26. Ma Q, Zhang D, Zhuang L, Zhang J. Intergranular corrosion resistance of Zn modified 5××× series Al alloy during retrogression and re-aging treatment. Mater Charact. 2018;144:264.

    Article  CAS  Google Scholar 

  27. Lin YC, Jiang YQ, Xia YC, Zhang XC, Zhou HM, Deng J. Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al-Cu-Mg alloy. Mat Sci Eng A. 2014;605:192.

    Article  CAS  Google Scholar 

  28. Liu G, Lin YC, Zhang XC, Jiang YQ. Effects of two-stage creep-aging on precipitates of an Al-Cu-Mg alloy. Mat Sci Eng A. 2014;614:45.

    Article  CAS  Google Scholar 

  29. Ly R, Karayan A, Hartwig K, Castaneda H. Insights into the electrochemical response of a partially recrystallized Al-Mg-Si alloy and its relationship to corrosion events. Electrochim Acta. 2019;308:35.

    Article  CAS  Google Scholar 

  30. Li H, Zhang X, Chen M, Li YF, Liang X. Effect of pre-deformation on the stress corrosion cracking susceptibility of aluminum alloy 2519. Rare Met. 2007;26(4):385.

    Article  Google Scholar 

  31. Vikas G. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014. IOP Conf Ser Mat Sci Eng. 2018;338(1):012008.

    Google Scholar 

  32. Zheng R, Ma C. Novel fabrication of bulk fine-grained Al-Cu-Mg alloy with superior mechanical properties. Adv Eng Mater. 2016;18(6):1027.

    Article  CAS  Google Scholar 

  33. Olivier G, Benjamin D, Tobias K, Gabi S, Mathias H. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology development. Adv Eng Mater. 2014;16(7):830.

    Article  Google Scholar 

  34. Saheb N. Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Min Met Mater. 2013;20(2):152.

    Article  CAS  Google Scholar 

  35. Cabrini M, Lorenzi S, Pastore T, Testa C, Manfredi D, Lorusso M, Calignano F, Pavese M, Andreatta F. Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure. Corros Sci. 2019;152(3):101.

    Article  CAS  Google Scholar 

  36. Revilla R, Liang J, Godet S, Graeve ID. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM. J Electrochem Soc. 2016;164(2):C27.

    Article  Google Scholar 

  37. Senöz C, Borodin S, Stratmann M, Rohwerder M. In situ detection of differences in the electrochemical activity of Al2Cu IMPs and investigation of their effect on FFC by scanning Kelvin probe force microscopy. Corros Sci. 2012;58(5):307.

    Article  Google Scholar 

  38. Deng Y, Ye R, Xu G, Yang J, Pan Q, Bing P, Cao X, Duan Y, Wang Y, Lu L. Corrosion behaviour and mechanism of new aerospace Al-Zn-Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1−x nanoparticles. Corros Sci. 2015;90:359.

    Article  CAS  Google Scholar 

  39. Tian W, Li S, Chen X, Liu J, Yu M. Intergranular corrosion of spark plasma sintering assembled bimodal grain sized AA7075 aluminum alloys. Corros Sci. 2016;107:211.

    Article  CAS  Google Scholar 

  40. Thierry G, SeBastien L. Processing dense hetero-nanostructured metallic materials by spark plasma sintering. Scr Mater. 2007;57(6):525.

    Article  Google Scholar 

  41. Srinivasarao B, Ohkubo T, Mukaib T, Hono K. Synthesis of high-strength bimodally grained iron by mechanical alloying and spark plasma sintering. Scr Mater. 2008;58(9):759.

    Article  CAS  Google Scholar 

  42. Lin YC, Liu G, Chen MS, Zhang JL, Chen ZG, Jiang YQ, Li J. Corrosion resistance of a two-stage stress-aged Al-Cu-Mg alloy: effects of external stress. J Alloy Compd. 2016;661:221.

    Article  CAS  Google Scholar 

  43. Niu PL, Li WY, Li N, Xu YX, Chen DL. Exfoliation corrosion of friction stir welded dissimilar 2024-to-7075 aluminum alloys. Mater Charact. 2019;147:93.

    Article  CAS  Google Scholar 

  44. Rai P, Shekhar S, Mondal K. Development of gradient microstructure in mild steel and grain size dependence of its electrochemical response. Corros Sci. 2018;138:85.

    Article  CAS  Google Scholar 

  45. Luo C, Zhang XX, Zhou XR, Sun ZH, Zhang XY, Tang ZH, Lu F, Thompson GE. Characterization of localized corrosion in an Al-Cu-Li alloy. J Mater Eng Perform. 2016;25(5):1811.

    Article  CAS  Google Scholar 

  46. Navaser M, Atapour M. Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J Mater Sci Technol. 2017;33(2):155.

    Article  CAS  Google Scholar 

  47. Bach LX, Son DL, Phong MT, Thang LV, Bian MZ, Nam ND. A study on Mg and AlN composite in microstructural and electrochemical characterizations of extruded aluminum alloy. Compo Part B-Eng. 2019;156:332.

    Article  CAS  Google Scholar 

  48. Zhang X, Lv Y, Hashimoto T, Nilsson JO, Zhou XR. Intergranular corrosion of AA6082 Al-Mg-Si alloy extrusion: the influence of trace Cu and grain boundary misorientation. J Alloy Compd. 2021;853:157228.

    Article  CAS  Google Scholar 

  49. Luo C, Zhou X, Thompson GE, Hughes AE. Observations of intergranular corrosion in AA2024-T351: the influence of grain stored energy. Corros Sci. 2012;61(8):35.

    Article  CAS  Google Scholar 

  50. Zheng YY, Luo BH, He C, Gao Y, Bai ZH. Corrosion evolution and behaviour of Al–2.1Mg–1.6Si alloy in chloride media. Rare Met. 2021;40(4):908.

    Article  Google Scholar 

  51. Li QA, Li X, Zhang Q, Chen J. Effect of rare-earth element Sm on the corrosion behavior of Mg-6Al-1.2Y-0.9Nd alloy. Rare Met. 2010;29(6):557.

    Article  CAS  Google Scholar 

  52. Zhu Y, Sun K, Frankel GS. Intermetallic phases in aluminum alloys and their roles in localized corrosion. J Electrochem Soc. 2018;165(11):C807.

    Article  CAS  Google Scholar 

  53. Lu Y, Bradshaw AR, Chiu YL, Jones IP. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys. Mater Sci Eng C Mater Biol Appl. 2015;48:480.

    Article  CAS  Google Scholar 

  54. Miranda G, Carvalho O, Soares D, Silva FS. Properties assessment of nickel particulate-reinforced aluminum composites produced by hot pressing. J Compos Mater. 2015;50(4):523.

    Article  Google Scholar 

  55. Rohwerder M, Turcu F. High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim Acta. 2007;53(2):290.

    Article  CAS  Google Scholar 

  56. Li W, Cai M, Wang Y, Yu S. Influences of tensile strain and strain rate on the electron work function of metals and alloys. Scr Mater. 2006;54(5):921.

    Article  CAS  Google Scholar 

  57. Huo WG, Hu JJ, Cao HH, Du Y, Zhang W. Simultaneously enhanced mechanical strength and inter-granular corrosion resistance in high strength 7075 Al alloy. J Alloy Compd. 2019;781:680.

    Article  CAS  Google Scholar 

  58. Yuan R, Gu Y, Wu H. Effect of surface Volta potential of Cr-containing steel on uniform corrosion and pitting corrosion. Mater Corros. 2021;72(11):1774.

    Article  CAS  Google Scholar 

  59. Meng YB, Li SM, Liu JH, Yu M, Chen MJ. Pitting of 2024 alloys prepared by spark plasma sintering using powders with different sizes. Corros Sci. 2020;170:108525.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Nature Science Foundations of China (Nos. 51271012 and 51671013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Mei Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, YB., Li, SM., Liu, JH. et al. Intergranular corrosion of spark plasma sintered 2024 aluminum alloy at different heat treatment states. Rare Met. 41, 3865–3877 (2022). https://doi.org/10.1007/s12598-022-01990-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01990-7

Keywords

Navigation