Skip to main content

Advertisement

Log in

Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Graphite phase carbon nitride (g-C3N4) is a promising catalyst for artificial photocatalytic carbon dioxide (CO2) reduction. However, the fast carrier recombination and the inadequacy of the CO2 reduction active site in g-C3N4 block the escalation of the performance. In this work, NiCo layered double hydroxide (NiCo LDH) nanoflowers were self-assembled with ultrathin graphite phase carbon nitride (g-C3N4) by an ultrasonic stirring strategy utilizing the Zeta potential difference. The formed NiCo LDH/ultrathin g-C3N4 nanosheets (LDH-CN) photocatalysts own the merits of rich active sites and Z-scheme heterojunction, which lead to the enhanced CO2 reduction activity and selectivity. The highest yields of CO and CH4 were 114.24 and 26.48 μmol·h−1·g−1, which were much greater than those of g-C3N4 and LDH. Meanwhile, the enhanced selectivity for CO confirmed the strong redox ability in the LDH-CN caused by the Z-scheme. The heterojunction-induced built-in electrical field can promote the separation and migration of photoinduced electrons and holes. This study provides a theoretical basis for designing high-performance photocatalysts.

Graphical abstract

摘要

石墨相氮化碳(g-C3N4)是一种很有前途的人工光催化二氧化碳还原催化剂。然而, 载流子快速重组和g-C3N4中活性位点的不足阻碍了CO2还原性能的提升。本研究利用Zeta电位差, 采用超声搅拌的方法, 利用超薄石墨相氮化碳(g-C3N4)自组装NiCo层状双氢氧化物(NiCo LDH)纳米花形成的NiCo LDH/超薄g-C3N4纳米片(LDH-CN)光催化剂具有丰富的活性位点和Z型异质结的优点, 从而提高了CO2的还原活性和选择性。最高获得CO和CH4的产率分别为114.24和26.48 μmol·h−1·g−1, 远高于g-C3N4和LDH。同时, 对CO选择性的增强证实了Z型结构的LDH-CN具有较强的氧化还原能力。异质结诱导的内置电场可以促进光诱导电子和空穴的分离和迁移。本研究为高性能光催化剂的设计提供了理论和实验依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Y, Xia B, Ran J, Davey K, Qiao SZ. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv Energy Mater. 2020;10(9):1903879.

    Article  CAS  Google Scholar 

  2. Yang J, Du H, Yu Q, Zhang W, Zhang Y, Ge J, Li H, Liu J, Li H, Xu H. Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction. J Colloid Interface Sci. 2021;606(Pt 1):793.

    Google Scholar 

  3. Ran J, Jaroniec M, Qiao SZ. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater. 2018;30(7):1704649.

    Article  CAS  Google Scholar 

  4. Zhu X, Wang Z, Zhong K, Li Q, Ding P, Feng Z, Yang J, Du Y, Song Y, Hua Y, Yuan J, She Y, Li H, Xu H. Mo-O-Bi bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/BiO2-x heterojunction. Chem Eng J. 2022;429:132204.

    Article  CAS  Google Scholar 

  5. Chen F, Ma Z, Ye L, Ma T, Zhang T, Zhang Y, Huang H. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv Mater. 2020;32(11):1908350.

    Article  CAS  Google Scholar 

  6. Xu M, Wei M. Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications. Adv Funct Mater. 2018;28(47):1802943.

    Article  CAS  Google Scholar 

  7. Zhu X, Yang J, Zhu X, Yuan J, Zhou M, She X, Yu Q, Song Y, She Y, Hua Y, Li H, Xu H. Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts. Chem Eng J. 2021;422:129888.

    Article  CAS  Google Scholar 

  8. Zhu X, Cao Y, Song Y, Yang J, She X, Mo Z, She Y, Yu Q, Zhu X, Yuan J, Li H, Xu H. Unique dual-sites boosting overall CO2 photoconversion by hierarchical electron harvesters. Small. 2021;17(40):2103796.

    Article  CAS  Google Scholar 

  9. Zhang G, Zhang X, Meng Y, Pan G, Ni Z, Xia S. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chem Eng J. 2020;392:123684.

    Article  CAS  Google Scholar 

  10. Tan L, Wang Z, Zhao Y, Song YF. Recent progress on nanostructured layered double hydroxides for visible-light-induced photoreduction of CO2. Chem Asian J. 2020;15(21):3380.

    Article  CAS  Google Scholar 

  11. Fan G, Li F, Evans DG. Duan X. 2014 Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev. 2014;43(20):7040.

    Article  CAS  Google Scholar 

  12. Gao X, Zhou Y, Jing F, Luo J, Huang Q, Chu W. Layered double hydroxides derived ZnO-Al2O3 supported Pd-Ag catalysts for selective hydrogenation of acetylene. Chinese J Chem. 2017;35(6):1009.

    Article  CAS  Google Scholar 

  13. Zhao Y, Chen G, Bian T, Zhou C, Waterhouse GI, Wu LZ, Tung CH, Smith LJ, O’Hare D, Zhang T. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv Mater. 2015;27(47):7824.

    Article  CAS  Google Scholar 

  14. Wang K, Zhang L, Su Y, Shao D, Zeng S, Wang W. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets. J Mater Chem A. 2018;6(18):8366.

    Article  CAS  Google Scholar 

  15. Dou Y, Zhang S, Pan T, Xu S, Zhou A, Pu M, Yan H, Han J, Wei M, Evans DG, Duan X. TiO2@layered double hydroxide core-shell nanospheres with largely enhanced photocatalytic activity toward O2 generation. Adv Funct Mater. 2015;25(15):2243.

    Article  CAS  Google Scholar 

  16. Tan L, Xu SM, Wang Z, Hao X, Li T, Yan H, Zhang W, Zhao Y, Song YF. 600 nm induced nearly 99% selectivity of CH4 from CO2 photoreduction using defect-rich monolayer structures. Cell Rep Phy Sci. 2021;2(2):100322.

    Article  CAS  Google Scholar 

  17. Sun Y, Xu H, Zhao X, Hui Z, Yu C, Wang L, Xue J, Zhao Y, Zhou R, Dai H, Miao C, Chen Q, Zhou J, Sun G, Huang W. Identifying the active site of ultrathin NiCo LDH as an efficient peroxidase mimic with superior substrate affinity for sensitive detection of hydrogen peroxide. J Mater Chem B. 2019;7(40):6232.

    Article  CAS  Google Scholar 

  18. Chen C, Tao L, Du S, Chen W, Wang Y, Zou Y, Wang S. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage. Adv Funct Mater. 2020;30(14):1909832.

    Article  CAS  Google Scholar 

  19. Hu E, Feng Y, Nai J, Zhao D, Hu Y, Lou XW. Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2018;11(4):872.

    CAS  Google Scholar 

  20. Li Y, Gu M, Zhang X, Fan J, Lv K, Carabineiro SAC, Dong F. 2D g-C3N4 for advancement of photo-generated carrier dynamics: status and challenges. Mater Today. 2020;41:270.

    Article  CAS  Google Scholar 

  21. Liu H, Li XX, Liu XY, Ma ZH, Yin ZY, Yang WW, Yu YS. Schiff-base-rich g-CxN4 supported PdAg nanowires as an efficient Mott-Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 2021;40(4):808.

    Article  CAS  Google Scholar 

  22. Zhu X, Yang J, She X, Song Y, Qian J, Wang Y, Xu H, Li H, Yan Q. Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments. J Mater Chem A. 2019;7(10):5209.

    Article  CAS  Google Scholar 

  23. Talapaneni SN, Singh G, Kim IY, AlBahily K, Al-Muhtaseb AH, Karakoti AS, Tavakkoli E, Vinu A. Nanostructured carbon nitrides for CO2 capture and conversion. Adv Mater. 2020;32(18):e1904635.

    Article  CAS  Google Scholar 

  24. Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc. 2013;135(12):4596.

    Article  CAS  Google Scholar 

  25. Mao J, Peng T, Zhang X, Li K, Ye L, Zan L. Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol. 2013;3(5):1253.

    Article  CAS  Google Scholar 

  26. Cao SW, Liu XF, Yuan YP, Zhang ZY, Liao YS, Fang J, Loo SCJ, Sum TC, Xue C. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl Catal B. 2014;147:940.

    Article  CAS  Google Scholar 

  27. Bai L, Huang H, Zhang S, Hao L, Zhang Z, Li H, Sun L, Guo L, Huang H, Zhang Y. Photocatalysis-assisted Co3O4/g-C3N4 p–n junction all-solid-state supercapacitors: a bridge between energy storage and photocatalysis. Adv Sci. 2020;7(22):2001939.

    Article  CAS  Google Scholar 

  28. She X, Xu H, Li L, Mo Z, Zhu X, Yu Y, Song Y, Wu J, Qian J, Yuan S, Li H. Steering charge transfer for boosting photocatalytic H2 evolution: integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect. Appl Catal B. 2019;245:477.

    Article  CAS  Google Scholar 

  29. Song B, Zeng Z, Zeng G, Gong J, Xiao R, Ye S, Chen M, Lai C, Xu P, Tang X. Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: a review of strategy, synthesis, and applications. Adv Colloid Interface Sci. 2019;272:101999.

    Article  CAS  Google Scholar 

  30. Nayak S, Swain G, Parida K. Enhanced photocatalytic activities of RhB degradation and H2 evolution from in situ formation of the electrostatic heterostructure MoS2/NiFe LDH nanocomposite through the Z-scheme mechanism via p-n heterojunctions. ACS Appl Mater Interfaces. 2019;11(23):20923.

    Article  CAS  Google Scholar 

  31. Lestari PR, Takei T, Kumada N. Novel ZnTi/C3N4/Ag LDH heterojunction composite for efficient photocatalytic phenol degradation. J Solid State Chem. 2021;294(2):121858.

    Article  CAS  Google Scholar 

  32. Zhu X, Zhou G, Yi J, Ding P, Yang J, Zhong K, Song Y, Hua Y, Zhu X, Yuan J, She Y, Li H, Xu H. Accelerated photoreduction of CO2 to CO over a stable heterostructure with a seamless interface. ACS Appl Mater Interfaces. 2021;32(32):222.

    Google Scholar 

  33. Liu Y, Zhang M, Hu D, Li R, Hu K, Yan K. Ar plasma-exfoliated ultrathin NiCo-layered double hydroxide nanosheets for enhanced oxygen evolution. ACS Appl Energy Mater. 2019;2(2):1162.

    Article  CAS  Google Scholar 

  34. Wang X, Li X, Du X, Ma X, Hao X, Xue C, Zhu H, Li S. Controllable synthesis of NiCo LDH nanosheets for fabrication of high-performance supercapacitor electrodes. Electroanalysis. 2017;29(5):1286.

    Article  CAS  Google Scholar 

  35. Mo Z, Xu H, She X, Song Y, Yan P, Yi J, Zhu X, Lei Y, Yuan S, Li H. Constructing Pd/2D-C3N4­ composites for efficient photocatalytic H2 evolution through nonplasmon-induced bound electrons. Appl Surf Sci. 2019;467–468:151.

    Article  CAS  Google Scholar 

  36. Chen Z, Yu Y, She X, Xia K, Mo Z, Chen H, Song Y, Huang J, Li H, Xu H. Constructing Schottky junction between 2D semiconductor and metallic nickel phosphide for highly efficient catalytic hydrogen evolution. Appl Surf Sci. 2019;495:143528.

    Article  CAS  Google Scholar 

  37. Wang Z, Liu W, Hu Y, Xu L, Guan M, Qiu J, Huang Y, Bao J, Li H. An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation. Inorg Chem Front. 2019;6(7):1890.

    Article  CAS  Google Scholar 

  38. Wang Z, Liu W, Hu Y, Guan M, Xu L, Li H, Bao J, Li H. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl Catal B. 2020;272:118959.

    Article  CAS  Google Scholar 

  39. Cho S, Jang JW, Kong KJ, Kim ES, Lee KH, Lee JS. Anion-doped mixed metal oxide nanostructures derived from layered double hydroxide as visible light photocatalysts. Adv Funct Mater. 2013;23(19):2348.

    Article  CAS  Google Scholar 

  40. Vos MFJ, van Straaten G, Kessels WMME, Mackus AJM. Atomic layer deposition of cobalt using H2-, N2-, and NH3-based plasmas: on the role of the Co-reactant. J Phys Chem C. 2018;122(39):22519.

    Article  CAS  Google Scholar 

  41. Tang Y, Liu Q, Dong L, Wu HB, Yu XY. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl Catal B. 2020;266:118627.

    Article  CAS  Google Scholar 

  42. Zhang L, Ou M, Yao H, Li Z, Qu D, Liu F, Wang J, Wang J, Li Z. Enhanced supercapacitive performance of graphite-like C3N4 assembled with NiAl-layered double hydroxide. Electrochim Acta. 2015;186:292.

    Article  CAS  Google Scholar 

  43. Li Q, Zhu X, Yang J, Yu Q, Zhu X, Chu J, Du Y, Wang C, Hua Y, Li H, Xu H. Plasma treated Bi2WO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction. Inorg Chem Front. 2020;7(3):597.

    Article  CAS  Google Scholar 

  44. She X, Xu H, Yu Y, Li L, Zhu X, Mo Z, Song Y, Wu J, Yuan S, Li H. Accelerating photogenerated charge kinetics via the synergetic utilization of 2D semiconducting structural advantages and noble-metal-free schottky junction effect. Small. 2019;15(11):1804613.

    Article  CAS  Google Scholar 

  45. Hou J, Cao S, Sun Y, Wu Y, Liang F, Lin Z, Sun L. Atomically thin mesoporous In2O3–x/In2S3 lateral heterostructures enabling robust broadband-light photo-electrochemical water splitting. Adv Energy Mater. 2018;8(9):1701114.

    Article  CAS  Google Scholar 

  46. Chen GZ, Chen KJ, Fu JW, Liu M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscêopy. Rare Met. 2020;39(6):607.

    Article  CAS  Google Scholar 

  47. Zhong K, Zhou AQ, Zhou GL, Li QD, Yang JM, Wang ZL, Zhu XW, Qian JC, Hua YJ, Li HM, Xu H. Plasma-induced black bismuth tungstate as a photon harvester for photocatalytic carbon dioxide conversion. New J Chem. 2021;45(4):1993.

    Article  CAS  Google Scholar 

  48. Yang J, Zhu X, Yu Q, Zhou G, Li Q, Wang C, Hua Y, She Y, Xu H, Li H. Plasma-induced defect engineering: boosted the reverse water gas shift reaction performance with electron trap. J Colloid Interface Sci. 2020;580:814.

    Article  CAS  Google Scholar 

  49. Yang J, Zhu X, Mo Z, Yi J, Yan J, Deng J, Xu Y, She Y, Qian J, Xu H, Li H. A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction. Inorg Chem Front. 2018;5(12):3163.

    Article  CAS  Google Scholar 

  50. Fu FY, Shown I, Li CS, Raghunath P, Lin TY, Billo T, Wu HL, Wu CI, Chung PW, Lin MC, Chen LC, Chen KH. KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction. ACS Appl Mater Interf. 2019;11(28):25186.

    Article  CAS  Google Scholar 

  51. Ganesh I, Gupta AK, Kumar PP, Sekhar PS, Radha K, Padmanabham G, Sundararajan G. Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Scientific World Journal. 2012;2012:127326.

    Article  CAS  Google Scholar 

  52. Di T, Zhu B, Cheng B, Yu J, Xu J. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J Catal. 2017;352:532.

    Article  CAS  Google Scholar 

  53. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014;43(15):5234.

    Article  CAS  Google Scholar 

  54. Zhu X, Zhou G, Wang Z, Zhong K, Ding P, Song Y, Yuan J, She Y, Li H, Xu H. Nanostructure and functional group engineering of black phosphorus via plasma treatment for CO2 photoreduction. J CO2 Utilizat. 2021;54(12):101745.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22005123, 21776118, 22178152 and 22008095), Jiangsu University Foundation (No. 20JDG16), Jiangsu Funds for Distinguished Young Scientists (No. BK20190045), the Special Foundation of China Postdoctoral (No. 2020TQ0127), Jiangsu Province Postdoctoral Science Foundation (Nos. 2021K396C and 2021K382C), Jiangsu Agricultural Science and Technology Independent Innovation Fund (No. CX (21)3067) and the Postgraduate High-tech Research Key Laboratory of Zhenjiang (No. SS2018002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Lin Zhu, Jin-Yu Chu or Hui Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2173 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, AQ., Yang, JM., Zhu, XW. et al. Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Met. 41, 2118–2128 (2022). https://doi.org/10.1007/s12598-022-01960-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01960-z

Keywords

Navigation