Skip to main content

Advertisement

Log in

Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

二维过渡金属硒化物, 尤其是MoSe2, 被认为是一种优异的析氢反应 (HER) 电催化剂。但由于其活性位点密度低, 在HER中仍具有较高的过电位, 限制了其实际应用。本文中, 通过金属阳离子钨的嵌入增强了MoSe2的析氢反应活性。所引入的钨成功地取代了Mo在MoSe2晶格中的位置, 引发了层间距的扩展, 并带来了新的弯曲边缘作为活性位点。此外, 金属的加入也促进了电子从Mo活性中心向W和Se原子的转移, 使其具有良好的氢吸附性能。正如预期的那样, 金属阳离子调控的MoSe2纳米片在10 mA·cm-2电流密度下的过电位低至247 mV。与原始的MoSe2相比, 其Tafel斜率及转化频率也更为优异。基于金属阳离子调控, 本文开发了一种低成本、高效的钼基电催化剂, 并揭示了其优越的析氢反应机理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tan Y, Yang C, Qian W, Teng C. Flower-like MnO2 on layered carbon derived from Sisal Hemp for asymmetric supercapacitor with enhanced energy density. J Alloy Compd. 2020;826:154133.

    Article  CAS  Google Scholar 

  2. Yang T, Qian T, Shen X, Wang M, Liu S, Zhong J, Yan C, Rosei F. Single-cluster Au as an usher for deeply cyclable Li metal anodes. J Mater Chem A. 2019;7(24):14496.

    Article  CAS  Google Scholar 

  3. Liu L, Sun J, Ding J, Zhang Y, Jia J, Sun T. Catalytic oxidation of VOCs over SmMnO3 perovskites: catalyst synthesis, change mechanism of active species, and degradation path of toluene. Inorg Chem. 2019;58(20):14275.

    Article  CAS  Google Scholar 

  4. Ji H, Wang M, Liu S, Sun H, Liu J, Qian T, Yan C. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. Electrochim Acta. 2020;334:135562.

    Article  CAS  Google Scholar 

  5. Chen L, Zhou L, Lu H, Zhou Y, Huang J, Wang J, Wang Y, Yuan X, Yao Y. Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction. Chem Commun. 2020;56(64):9138.

    Article  CAS  Google Scholar 

  6. Shen X, Qian T, Chen P, Liu J, Wang M, Yan C. Bioinspired polysulfiphobic artificial interphase layer on lithium metal anodes for lithium sulfur batteries. ACS Appl Mater Interfaces. 2018;10(36):30058.

    Article  CAS  Google Scholar 

  7. Zou F, Hu J, Miao W, Shen Y, Ding J, Jing X. Synthesis and characterization of enhanced photocatalytic activity with Li+-doping nanosized TiO2 catalyst. ACS Omega. 2020;5(44):28510.

    Article  CAS  Google Scholar 

  8. Yuan X, Jiang B, Cao M, Zhang C, Liu X, Zhang Q, Lyu F, Lin G, Zhang Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020;13(1):265.

    Article  CAS  Google Scholar 

  9. Yuan X, Wu Y, Jiang B, Wu Z, Tao Z, Lu X, Liu J, Qian T, Lin H, Zhang Q. Interface engineering of silver-based heterostructures for CO2 reduction reaction. ACS Appl Mater Interfaces. 2020;12(50):56642.

    Article  CAS  Google Scholar 

  10. Peng X, Yan Y, Jin X, Huang C, Jin W, Gao B, Chu PK. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy. 2020;78:105234.

    Article  CAS  Google Scholar 

  11. Wang H, Xiao X, Liu S, Chiang CL, Kuai X, Peng CK, Lin YC, Meng X, Zhao J, Choi J, Lin YG, Lee JM, Gao L. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J Am Chem Soc. 2019;141(46):18578.

    Article  CAS  Google Scholar 

  12. Kou Z, Li X, Zhang L, Zang W, Gao X, Wang J. Dynamic surface chemistry of catalysts in oxygen evolution reaction. Small Sci. 2021;1(7):2100011.

    Article  Google Scholar 

  13. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021;40(6):1373.

    Article  CAS  Google Scholar 

  14. Gao X, Liu X, Zang W, Dong H, Pang Y, Kou Z, Wang P, Pan Z, Wei S, Mu S, Wang J. Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy. 2020;78:105355.

    Article  CAS  Google Scholar 

  15. Liu S, Wang M, Ji H, Shen X, Yan C, Qian T. Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. Natl Sci Rev. 2021;8(5):nwaa136.

    Article  CAS  Google Scholar 

  16. Wang M, Liu S, Ji H, Liu J, Yan C, Qian T. Unveiling the essential nature of Lewis basicity in thermodynamically and dynamically promoted nitrogen fixation. Adv Funct Mater. 2020;30(32):2001244.

    Article  CAS  Google Scholar 

  17. Zang W, Sun T, Yang T, Xi S, Waqar M, Kou Z, Lyu Z, Feng Y, Wang J, Pennycook S. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Adv Mater. 2021;33(8):2003846.

    Article  CAS  Google Scholar 

  18. Guo J, Wang J, Wu Z, Lei W, Zhu J, Xia K, Wang D. Controllable synthesis of molybdenum-based electrocatalysts for hydrogen evolution reaction. J Mater Chem A. 2017;5(10):4879.

    Article  CAS  Google Scholar 

  19. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335.

    Article  CAS  Google Scholar 

  20. Yu Y, Nam GH, He Q, Wu XJ, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran FR, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat Chem. 2018;10(6):638.

    Article  CAS  Google Scholar 

  21. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337.

    Article  CAS  Google Scholar 

  22. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013;13(3):1341.

    Article  CAS  Google Scholar 

  23. Kuraganti V, Jain A, Bar-Ziv R, Ramasubramaniam A, Bar-Sadan M. Manganese doping of MoSe2 promotes active defect sites for hydrogen evolution. ACS Appl Mater Interfaces. 2019;11(28):25155.

    Article  CAS  Google Scholar 

  24. Lee J, Kang S, Yim K, Kim K, Jang HW, Kang Y, Han S. Hydrogen evolution reaction at anion vacancy of two-dimensional transition metal dichalcogenides: ab initio computational screening. J Phys Chem Lett. 2018;9(8):2049.

    Article  CAS  Google Scholar 

  25. Wang C, Lu H, Tang K, Mao Z, Li Q, Wang X, Yan C. Atom removal on the basal plane of layered MoS2 leading to extraordinarily enhanced electrocatalytic performance. Electrochim Acta. 2020;336:135740.

    Article  CAS  Google Scholar 

  26. Tang K, Wang X, Li Q, Yan C. High edge selectivity of in situ electrochemical Pt deposition on edge-rich layered WS2 nanosheets. Adv Mater. 2018;30(7):1704779.

    Article  CAS  Google Scholar 

  27. Chen L, Feng H, Zhang R, Wang S, Zhang X, Wei Z, Zhu Y, Gu M, Zhao C. Phase-controlled synthesis of 2H/3R-MoSe2 nanosheets on P-doped carbon for synergistic hydrogen evolution. ACS Appl Nano Mater. 2020;3(7):6516.

    Article  CAS  Google Scholar 

  28. Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tenne R, Rao CNR. Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes. Dalton Trans. 2015;44(37):16399.

    Article  CAS  Google Scholar 

  29. Zimron O, Zilberman T, Kadam SR, Ghosh S, Kolatker SL, Neyman A, Bar-Ziv R, Bar-Sadan M. Co-doped MoSe2 nanoflowers as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media. Isr J Chem. 2020;60(5–6):624.

    Article  CAS  Google Scholar 

  30. Jiang Q, Lu Y, Huang Z, Hu J. Facile solvent-thermal synthesis of ultrathin MoSe2 nanosheets for hydrogen evolution and organic dyes adsorption. Appl Surf Sci. 2017;402:277.

    Article  CAS  Google Scholar 

  31. Ren X, Ma Q, Ren P, Wang Y. Synthesis of nitrogen-doped MoSe2 nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction. Int J Hydrogen Energy. 2018;43(32):15275.

    Article  CAS  Google Scholar 

  32. He JN, Liang YQ, Mao J, Zhang XM, Yang XJ, Cui ZD, Zhu SL, Li ZY, Li BB. 3D tungsten-doped MoS2 nanostructure: a low-cost, facile prepared catalyst for hydrogen evolution reaction. J Electrochem Soc. 2016;163(5):H299.

    Article  CAS  Google Scholar 

  33. Wang X, Chen Y, Zheng B, Qi F, He J, Li Q, Li P, Zhang W. Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J Alloy Compd. 2017;691:698.

    Article  CAS  Google Scholar 

  34. Xu QC, Zhang YF, Zheng YT, Liu YX, Tian ZM, Shi YY, Wang Z, Ma JM, Zheng WJ. Synergistic effects of tungsten doping and sulfur vacancies in MoS2 on enhancement of hydrogen evolution. J Phys Chem C. 2021;125(21):11369.

    Article  CAS  Google Scholar 

  35. Nguyen QT, Nguyen PD, Nguyen DN, Truong QD, Chi TTK, Ung TTD, Honma I, Liem NQ, Tran PD. Novel amorphous molybdenum selenide as an efficient catalyst for hydrogen evolution reaction. ACS Appl Mater Interfaces. 2018;10(10):8659.

    Article  CAS  Google Scholar 

  36. Apte A, Krishnamoorthy A, Hachtel JA, Susarla S, Yoon J, Sassi LM, Bharadwaj P, Tour JM, Idrobo JC, Kalia RK, Nakano A, Vashishta P, Tiwary CS, Ajayan PM. Two-dimensional lateral epitaxy of 2H (MoSe2)−1T′ (ReSe2) phases. Nano Lett. 2019;19(9):6338.

    Article  CAS  Google Scholar 

  37. Vasu K, Meiron OE, Enyashin AN, Bar-Ziv R, Bar-Sadan M. Effect of Ru doping on the properties of MoSe2 nanoflowers. J Phys Chem C. 2019;123(3):1987.

    Article  CAS  Google Scholar 

  38. Liu S, Wang M, Qian T, Liu J, Yan C. Selenium-doped carbon nanosheets with strong electron cloud delocalization for nondeposition of metal oxides on air cathode of zinc-air battery. ACS Appl Mater Interfaces. 2019;11(22):20056.

    Article  CAS  Google Scholar 

  39. Ji H, Wang M, Liu S, Sun H, Liu J, Qian T, Yan C. In-situ observation as activity descriptor enables rational design of oxygen reduction catalyst for zinc-air battery. Energy Storage Mater. 2020;27:226.

    Article  Google Scholar 

  40. Kadam SR, Enyashin AN, Houben L, Bar-Ziv R, Bar-Sadan M. Ni-WSe2 nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media. J Mater Chem A. 2020;8(3):1403.

    Article  CAS  Google Scholar 

  41. Chia X, Sutrisnoh NAA, Sofer Z, Luxa J, Pumera M. Morphological effects and stabilization of the metallic 1T phase in layered V-, Nb-, and Ta-doped WSe2 for electrocatalysis. Chem Eur J. 2018;24(13):3199.

    Article  CAS  Google Scholar 

  42. Bhat K, Nagaraja H. Effect of isoelectronic tungsten doping on molybdenum selenide nanostructures and their graphene hybrids for supercapacitors. Electrochim Acta. 2019;302:459.

    Article  CAS  Google Scholar 

  43. Li X, Wang Y, Wang J, Da Y, Zhang J, Li L, Zhong C, Deng Y, Han X, Hu W. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv Mater. 2020;32(39):2003414.

    Article  CAS  Google Scholar 

  44. Li Y, Wang C, Cui M, Xiong J, Mi L, Chen S. Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting. Appl Surf Sci. 2021;543:148804.

    Article  CAS  Google Scholar 

  45. Zhang J, Chen Y, Liu M, Du K, Zhou Y, Li Y, Wang Z, Zhang J. 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: an efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Res. 2018;11(9):4587.

    Article  CAS  Google Scholar 

  46. Jiang M, Zhang J, Wu M, Jian W, Xue H, Ng TW, Lee CS, Xu J. Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. J Mater Chem A. 2016;4(39):14949.

    Article  CAS  Google Scholar 

  47. Najafi L, Bellani S, Oropesa-Nuñez R, Ansaldo A, Prato M, Castillo AEDR, Bonaccorso F. Engineered MoSe2-based heterostructures for efficient electrochemical hydrogen evolution reaction. Adv Energy Mater. 2018;8(16):1703212.

    Article  CAS  Google Scholar 

  48. Wu J, Li B, Shao Y, Wu X, Sun Y. Tuning the morphology and phase of MoSe2 by using a mixed solvent of water and dimethyl formamide and its enhanced electrocatalytic activity for hydrogen evolution reaction. J Mater Sci. 2020;55(5):2129.

    Article  CAS  Google Scholar 

  49. Deng S, Zhong Y, Zeng Y, Wang Y, Yao Z, Yang F, Lin S, Wang X, Lu X, Xia X, Tu J. Directional construction of vertical nitrogen-doped 1T–2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv Mater. 2017;29(21):1700748.

    Article  CAS  Google Scholar 

  50. Sun H, Wang M, Zhang S, Liu S, Shen X, Qian T, Niu X, Xiong J, Yan C. Boosting oxygen dissociation over bimetal sites to facilitate oxygen reduction activity of zinc-air battery. Adv Funct Mater. 2021;31(4):2006533.

    Article  CAS  Google Scholar 

  51. Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun. 2017;8(1):14586.

    Article  CAS  Google Scholar 

  52. Zhu Y, Zhang L, Zhao B, Chen H, Liu X, Zhao R, Wang X, Liu J, Chen Y, Liu M. Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides. Adv Funct Mater. 2019;29(34):1901783.

    Article  CAS  Google Scholar 

  53. Zhang G, Zheng X, Xu Q, Zhang J, Liu W, Chen J. Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe2/MWNT heterostructure for enhanced hydrogen evolution reaction. J Mater Chem A. 2018;6(11):4793.

    Article  CAS  Google Scholar 

  54. Xiao D, Huang C, Luo Y, Tang K, Ruan Q, Wang G, Chu P. Atomic-scale intercalation of graphene layers into MoSe2 nanoflower sheets as a highly efficient catalyst for hydrogen evolution reaction. ACS Appl Mater Interfaces. 2020;12(2):2460.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52071226, 51872193 and 5192500409) and the Natural Science Foundation of Jiangsu Province (Nos. BK20190827 and BK20181168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Wei Deng, Hao-Qing Ji or Cheng-Lin Yan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1812 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad, S., Wang, C., Deng, CW. et al. Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide. Rare Met. 41, 1851–1858 (2022). https://doi.org/10.1007/s12598-021-01948-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01948-1

Navigation