Skip to main content
Log in

Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

Sn4P3具有高比容量, 是一种很有发展前景的电池负极材料, 然而该材料较低的电子电导率和充放电过程中较大的体积变化严重限制了其实际应用。本研究通过简单易操作的原位低温合成工艺成功制备出囊泡结构Sn4P3@PNC复合负极材料, 该材料在锂/钠离子电池中展现出优异的倍率性能和长循环稳定性。在0.1 A·g−1的电流密度条件下, Sn4P3@PNC循环100圈之后依然可以保持 ~ 400 mAh·g−1的储钠容量 (基于电极的总质量), 同时该材料在0.2 A·g−1条件下循环50圈依然可以保持745 mAh·g−1的储锂容量。该材料优异的电化学性能可以归结于Sn4P3的超高分散、电极特殊的囊泡结构以及Sn4P3与N,P共掺杂碳层的紧密接触。该研究为下一代高比能能量存储提供了一种极具发展前景的电极材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou J, Liu X, Zhu L, Niu S, Cai J, Zheng X, Ye J, Lin Y, Zheng L, Zhu Z. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem. 2020;6(1):221.

    Article  CAS  Google Scholar 

  2. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.

    Article  CAS  Google Scholar 

  3. Wang Z, Jiang Y, Wu J, Jiang Y, Ma W, Shi Y, Liu X, Zhao B, Xu Y, Zhang J. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy. 2021;84:105906.

  4. Xia S, Yang B, Zhang H, Yang J, Liu W, Zheng S. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv Funct Mater. 2021:2101168.

  5. Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431.

    Article  CAS  Google Scholar 

  6. Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.

    Article  CAS  Google Scholar 

  7. Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.

    Article  CAS  Google Scholar 

  8. Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2021;40(6):1383.

    Article  CAS  Google Scholar 

  9. Ruan J, Pang Y, Luo S, Yuan T, Peng C, Yang J, Zheng S. Ultrafine red P nanoconfined between expanded graphene sheets for high-performance lithium-ion batteries. J Mater Chem A. 2018;6(42):20804.

    Article  CAS  Google Scholar 

  10. Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017;29(16):1605820.

    Article  Google Scholar 

  11. Yan Y, Xia S, Sun H, Pang Y, Yang J, Zheng S. A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chem Eng J. 2020;393:124788.

  12. Ran L, Luo B, Gentle IR, Lin T, Sun Q, Li M, Rana MM, Wang L, Knibbe R. Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano. 2020;14(7):8826.

    Article  CAS  Google Scholar 

  13. Palaniselvam T, Mukundan C, Hasa I, Santhosha AL, Goktas M, Moon H, Ruttert M, Schmuch R, Pollok K, Langenhorst F. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv Funct Mater. 2020;30(42):2004798.

    Article  CAS  Google Scholar 

  14. Saddique J, Zhang X, Wu T, Su H, Liu S, Zhang D, Zhang Y, Yu H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. J Mater Sci Technol. 2020;55:73.

    Article  Google Scholar 

  15. Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.

    Article  CAS  Google Scholar 

  16. Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ Sci. 2015;8(12):3531.

    Article  CAS  Google Scholar 

  17. Fullenwarth J, Darwiche A, Soares A, Donnadieu B, Monconduit L. NiP3: a promising negative electrode for Li-and Na-ion batteries. J Mater Chem A. 2014;2(7):2050.

    Article  CAS  Google Scholar 

  18. Liu Z, Yu XY, Paik U. Etching-in-a-box: a novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater. 2016;6(6):1502318.

    Article  Google Scholar 

  19. Li D, Wang H, Liu HK, Guo Z. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater. 2016;6(5):1501666.

    Article  Google Scholar 

  20. Ran L, Gentle I, Lin T, Luo B, Mo N, Rana M, Li M, Wang L, Knibbe R. Sn4P3@porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J Power Sources. 2020;461:228116.

  21. Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.

    Article  CAS  Google Scholar 

  22. Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12.

    Article  CAS  Google Scholar 

  23. Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv Energy Mater. 2016;6(15):1600376.

    Article  Google Scholar 

  24. Ma L, Yan P, Wu S, Zhu G, Shen Y. Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J Mater Chem A. 2017;5(32):16994.

    Article  CAS  Google Scholar 

  25. Guo Q, Ru Q, Liu Y, Yan H, Wang B, Hou X. One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium-ion batteries. ChemElectroChem. 2018;5(15):2150.

    Article  CAS  Google Scholar 

  26. Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310.

    Article  Google Scholar 

  27. Niu F, Yang J, Wang N, Zhang D, Fan W, Yang J, Qian Y. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv Funct Mater. 2017;27(23):1700522.

    Article  Google Scholar 

  28. Xia S, Lopez J, Liang C, Zhang Z, Bao Z, Cui Y, Liu W. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv Sci. 2019;6(9):1802353.

    Article  Google Scholar 

  29. Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XWD. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun. 2014;5(1):1.

    Google Scholar 

  30. Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci. 2012;5(7):7950.

    Article  CAS  Google Scholar 

  31. Zhang ZW, Zhong XB, Zhang YH, Tang MY, Li SX, Zhang HH, Hu PF, Liang JF. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare Met. 2021. Doi: https://doi.org/10.1007/s12598-021-01835-9.

  32. Xia S, Zhang X, Yang G, Shi L, Cai L, Xia Y, Yang J, Zheng S. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(10):11920.

    Article  CAS  Google Scholar 

  33. Xia S, Zhang X, Luo L, Pang Y, Yang J, Huang Y, Zheng S. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small. 2021;17(4):2006002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51971146 and 21905174), Shanghai Science and Technology Commission (No. 21010503100), the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-07-E00015) and Shanghai Outstanding Academic Leaders Plan. We also acknowledge the support of Shanghai Rising-Star Program (No. 21QA1406500). The theoretical simulation is supported by HPC Platform of University of Shanghai for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-You Zheng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, SX., Yan, YH., Sun, H. et al. Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries. Rare Met. 41, 1496–1503 (2022). https://doi.org/10.1007/s12598-021-01945-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01945-4

Navigation