Skip to main content

Advertisement

Log in

Engineering of electrolyte ion channels in MXene/holey graphene electrodes for superior supercapacitive performances

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

MXene has given great promises to supercapacitor electrode material due to its high conductivity and redox properties. However, the self-agglomeration of the MXene lamella will reduce its contact area with the electrolyte and generate a tortuous transportation pathway of the electrolyte ions, thereby reducing its capacitive performance and rate capability. In this work, we engineered the electrolyte ion channels by adjusting the MXene lamella size and inserting holey graphene (HG) nanosheets into the interlayer of the MXene flakes. The developed MXene/HG electrode can not only avoid the self-restacking of MXene but also provide unimpeded ion transport channels. As a result, the supercapacitive and rate performances of the small MXene lamella-based MXene/HG (S-MXene/HG) supercapacitor are prominently ameliorated. By adjusting the content of HG, the S-MXene/HG0.05 electrode exhibits excellent gravimetric capacitance of 446 F·g−1 and a rate capability of 77.5%. The S-MXene/HG0.05-based symmetric supercapacitor provides an impressive energy density of 14.84 Wh·kg−1 with excellent cyclic stability of 96% capacitance retention after 10,000 cycles. This demonstration of the engineering of the ion channels shows great potential in two-dimensional material-based supercapacitor electrodes.

Graphical abstract

摘要

MXene具有高导电性和氧化还原特性, 这一特性使其广泛应用于超级电容器的电极材料. 然而, MXene片层的自堆积会减少其与电解液的接触面积, 并产生曲折的电解液离子传输路径, 从而降低其电容性能和倍率性能。本文通过调整 MXene 片层尺寸并将多孔石墨烯 (HG) 纳米片插入 MXene 纳米片的层间来设计电解液离子传输通道。基于小片径 MXene的 MXene/HG (S-MXene/HG) 超级电容器的电容和倍率性能得到明显改善。 通过调节 HG 的含量, S-MXene/HG0.05 电极表现出优异的质量电容 (446 F·g-1)和倍率性能 (电容保持率为77.5%)。 基于 S-MXene/HG0.05 的对称式超级电容器提供了14.84 Wh·kg-1 能量密度, 并且在 10000 次循环后仍具有优异的循环稳定性 (电容保持率为96%)。 这种构建离子传输通道的方法在基于二维材料的超级电容器电极中显示出巨大的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu M, Li Z, Zhang H, Hu T, Zhang C, Wu Z, Wang X. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. Chem Commun. 2015;51:13531.

    Article  CAS  Google Scholar 

  2. Yang CZ, Huang HJ, He HY, Yang L, Jiang QG, Li WH. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev. 2021;435:213806.

    Article  CAS  Google Scholar 

  3. Huang HJ, Wei YJ, Yang Y, Yan MM, He HY, Jiang QG, Yang XF, Zhu JX. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J Energ Chem. 2021;57:601.

    Article  Google Scholar 

  4. Yang CZ, Jiang QG, Liu H, Yang L, He HY, Huang HJ, Li WH. Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction. J Mater Chem A. 2021;9:15432.

    Article  CAS  Google Scholar 

  5. Li H, Hou Y, Wang F, Lohe MR, Zhuang XD, Niu L, Feng XL. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable mxene and electrochemically exfoliated graphene. Adv Energy Mater. 2017;7(4):1601847.

    Article  Google Scholar 

  6. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29(18):7633.

    Article  CAS  Google Scholar 

  7. Yang L, Zheng W, Zhang P, Chen J, Tian WB, Zhang YM, Sun ZM. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J Electroanal Chem. 2018;830–831:1.

    Google Scholar 

  8. Salles P, Quain E, Kurra N, Sarycheva A, Gogotsi Y. Automated scalpel patterning of solution processed thin films for fabrication of transparent MXene microsupercapacitors. Small. 2018;14(44):1802864.

    Article  Google Scholar 

  9. Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater. 2015;27(2):339.

    Article  CAS  Google Scholar 

  10. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater. 2017;27(30):1701264.

    Article  Google Scholar 

  11. Fan ZM, Wang YS, Xie ZM, Wang DL, Yuan Y, Kang HJ, Su BL, Cheng ZJ, Liu YY. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci. 2018;5(10):1800750.

    Article  Google Scholar 

  12. Qian AN, Seo JY, Shi H, Lee JY, Chung CH. Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. Chemsuschem. 2018;11(21):3719.

    Article  CAS  Google Scholar 

  13. Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J Mater Chem A. 2019;7(18):10843.

    Article  CAS  Google Scholar 

  14. Yun MC, Ma YF, Cai Z, Ji HM, Han JM, Wang M, Tong ZM, Xiao LT, Jia ST, Chen XY. Holey graphene interpenetrating networks for boosting high-capacitive Co3O4 electrodes via an electrophoretic deposition process. Ceram Int. 2021;47(19):27210.

    Article  CAS  Google Scholar 

  15. Wang M, Oh J, Ghosh T, Hong S, Nam G, Hwang T, Nam JD. An interleaved porous laminate composed of reduced graphene oxide sheets and carbon black spacers by in situ electrophoretic deposition. RSC Adv. 2014;4(7):3284.

    Article  CAS  Google Scholar 

  16. Wang M, le Duong D, Mai NT, Kim S, Kim Y, Seo H, Kim YC, Jang W, Lee Y, Suhr J, Nam JD. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. ACS Appl Mater Interf. 2015;7(2):1348.

    Article  CAS  Google Scholar 

  17. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4:1716.

    Article  Google Scholar 

  18. Jiang Q, Kurra N, Maleski K, Lei Y, Liang H, Zhang Y, Gogotsi Y, Alshareef HN. On-chip MXene microsupercapacitors for AC-line filtering applications. Adv Energy Mater 2019;9(26):1901061.

    Article  Google Scholar 

  19. Shao H, Lin Z, Xu K, Taberna PL, Simon P. Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Stor. 2019;18:456.

    Google Scholar 

  20. Chen XF, Zhu YZ, Zhang M, Sui JY, Peng WC, Li Y, Zhang GL, Zhang FB, Fan XB. N-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano. 2019;13(8):9449.

    Article  CAS  Google Scholar 

  21. Guo J, Zhao YY, Liu AM, Ma TL. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim Acta. 2019;305:164.

    Article  CAS  Google Scholar 

  22. Ma J, Cheng YJ, Wang L, Dai XH, Yu F. Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chem Eng J. 2020;384:123329.

    Article  CAS  Google Scholar 

  23. Zhang JZ, Seyedin SY, Gu ZJ, Yang WR, Wang XG, Razal JM. MXene: a potential candidate for yarn supercapacitors. Nanoscale. 2017;9(47):18604.

    Article  CAS  Google Scholar 

  24. Qian AN, Hyeon SE, Seo JY, Chung CH. Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T=O, F, OH) MXene film electrodes. Electrochim Acta. 2018;266:86.

    Article  CAS  Google Scholar 

  25. Cherevko S, Kulyk N, Chung CH. Nanoporous Pt@AuxCu100–x by hydrogen evolution assisted electrodeposition of AuxCu100–x and galvanic replacement of Cu with Pt: electrocatalytic properties. Langmuir. 2012;28(6):3306.

    Article  CAS  Google Scholar 

  26. Ran FT, Wang TL, Chen SY, Liu YY, Shao L. Constructing expanded ion transport channels in flexible MXene film for pseudocapacitive energy storage. Appl Surf Sci. 2020;511:145627.

    Article  CAS  Google Scholar 

  27. Dutta P, Sikdar A, Majumdar A, Borah M, Padma N, Ghosh S, Maiti UN. Graphene aided gelation of MXene with oxidation protected surface for supercapacitor electrodes with excellent gravimetric performance. Carbon. 2020;169:225.

    Article  CAS  Google Scholar 

  28. Navarro-Suárez AM, Van Aken KL, Mathis T, Makaryan T, Yan J, Carretero-González J, Rojo T, Gogotsi Y. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim Acta. 2018;259:752.

    Article  Google Scholar 

  29. Zhang P, Zhu QZ, Soomro RA, He S, Sun N, Qiao N, Xu B. In situ ice template approach to fabricate 3D flexible MXene Film-based electrode for high performance supercapacitors. Adv Funct Mater. 2020;30(47):2000922.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2017YFA0304203), the National Natural Science Foundation of China (Nos. 21805174 and 51902190), the Key Research and Development Program of Shanxi Province for International Cooperation (No. 201803D421082), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Nos. 2019L0013 and 2019L0018), Shanxi Scholarship Council of China (No. 2021-004), the Program of Introducing Talents of Discipline to Universities (No. D18001), the Changjiang Scholars and Innovative Research Team at the University of Ministry of Education of China (No. IRT_17R70) and the Fund for Shanxi “1331 Project.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Fei Ma or Mei Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Ma, YF., Wang, M. et al. Engineering of electrolyte ion channels in MXene/holey graphene electrodes for superior supercapacitive performances. Rare Met. 41, 2084–2093 (2022). https://doi.org/10.1007/s12598-021-01935-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01935-6

Keywords

Navigation