Skip to main content
Log in

Room-temperature extraction of individual elements from charged spent LiFePO4 batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recycling millions of metric tons of spent LiFePO4 batteries would benefit human health while reducing resource depletion and environmental pollution. However, recovering individual elements from the spent batteries without generating waste is challenging. Here, we present a distinctive approach for recycling spent LiFePO4 batteries at room temperature, where water is the only leaching agent consumed. FePO4 and lithium intercalated graphite act as a precursor material for selectively extracting lithium, iron, and phosphorus through charging the LiFePO4 batteries to the delithiated state. NaOH solution extracted Fe from FePO4 within 30 min and regenerated without consumption, similar to a catalyst. Under the optimal leaching conditions (1 mol·L−1 NaOH, 0.5 h, NaOH/Fe molar ratio of 4.5), Fe and P leaching efficiencies achieved 89.1% and 99.2%, respectively. The methodology reflected in this research reduced the material cost per kg cathode material to a fraction of previously published reports, only occupies 6.13% of previous reports. In addition, the method improved the battery recycling revenue calculated by the EverBatt model by 2.31 times and 1.94 times over pyrometallurgical and hydrometallurgical methods. The proposed method allows for the convenient recovery of the elemental components of spent LiFePO4 batteries.

Graphical abstract

摘要

回收数以百万吨计的废旧磷酸铁电池将有益于人类健康, 同时减少资源消耗和环境污染。然而, 从废电池中回收单个元素而不产生废物是一项挑战。在这里, 我们提出了一种在室温下回收废旧磷酸铁锂电池的独特方法, 水是唯一消耗的浸出剂。FePO4和嵌锂石墨作为前体材料, 通过将LiFePO4电池充电至去锂状态来选择性地提取锂、铁和磷。NaOH溶液在30分钟内从FePO4中提取铁, 并在不消耗的情况下再生, 类似于催化剂。在最佳浸出条件下 (1mol·L−1 NaOH, 0.5 h, NaOH/Fe摩尔比为4.5), 铁和磷的浸出率分别达到89.1%和99.2%。本研究中反映的方法将回收每千克正极材料的成本降低到以前发表报告的一小部分, 仅占以前报告的6.13%。此外, EverBatt模型计算得出, 与火法和湿法冶金方法相比, 该方法将电池回收收入分别提高了2.31倍和1.94倍。该方法可方便地回收废旧磷酸铁锂电池的单个元素成分。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Turcheniuk K, Bondarev D, Singhal V, Yushin G. Ten years left to redesign lithium-ion batteries. Nature. 2018;559(7715):467.

    Article  CAS  Google Scholar 

  2. Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7020.

    Article  CAS  Google Scholar 

  3. Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y. On the sustainability of lithium ion battery industry: a review and perspective. Energy Storage Mater. 2021;36:186.

    Article  Google Scholar 

  4. Xu P, Dai Q, Gao H, Liu H, Zhang M, Li M, Chen Y, An K, Meng YS, Liu P, Li Y, Spangenberger JS, Gaines L, Lu J, Chen Z. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule. 2020;4(12):2609.

    Article  CAS  Google Scholar 

  5. Natarajan S, Aravindan V. An urgent call to spent LIB recycling: whys and wherefores for graphite recovery. Adv Energy Mater. 2020;10(37):2002238.

    Article  CAS  Google Scholar 

  6. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder KS, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75.

    Article  CAS  Google Scholar 

  7. Piatek J, Afyon S, Budnyak TM, Budnyk S, Sipponen MH, Slabon A. Sustainable Li-ion batteries: chemistry and recycling. Adv Energy Mater. 2020;10:2003456.

    Google Scholar 

  8. Zhang X, Li L, Fan E, Xue Q, Bian Y, Wu F, Chen R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev. 2018;47(19):7239.

    Article  CAS  Google Scholar 

  9. Liu K, Tan Q, Liu L, Li J. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution. Environ Sci Technol. 2019;53(16):9781.

    Article  CAS  Google Scholar 

  10. Zhang J, Hu J, Liu Y, Jing Q, Yang C, Chen Y, Wang C. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries. ACS Sustain Chem Eng. 2019;7(6):5626.

    Article  Google Scholar 

  11. Xiao WL, Zheng YJ, He HB. Cascade extraction of lithium in anode of waste lithium ion battery. Chin J Rare Metals. 2020;44(10):1078.

    Google Scholar 

  12. Yu J, Wang X, Zhou M, Wang Q. A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy Environ Sci. 2019;12(9):2672.

    Article  CAS  Google Scholar 

  13. Song W, Liu J, You L, Wang S, Zhou Q, Gao Y, Yin R, Xu W, Guo Z. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application. J Power Sour. 2019;419:192.

    Article  CAS  Google Scholar 

  14. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater. 2008;7(8):665.

    Article  CAS  Google Scholar 

  15. Gong C, Xue Z, Wen S, Ye Y, Xie X. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sour. 2016;318:93.

    Article  CAS  Google Scholar 

  16. Shin EJ, Kim S, Noh JK, Byun D, Chung KY, Kim HS, Cho BW. A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries. J Mater Chem A. 2015;3(21):11493.

    Article  CAS  Google Scholar 

  17. Zheng R, Zhao L, Wang W, Liu Y, Ma Q, Mu D, Li R, Dai C. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Adv. 2016;6(49):43613.

    Article  CAS  Google Scholar 

  18. Yang Y, Zheng X, Cao H, Zhao C, Lin X, Ning P, Zhang Y, Jin W, Sun Z. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustain Chem Eng. 2017;5(11):9972.

    Article  CAS  Google Scholar 

  19. Fan E, Li L, Zhang X, Bian Y, Xue Q, Wu J, Wu F, Chen R. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach. ACS Sustain Chem Eng. 2018;6(8):11029.

    Article  CAS  Google Scholar 

  20. Yadav P, Jie CJ, Tan S, Srinivasan M. Recycling of cathode from spent lithium iron phosphate batteries. J Hazard Mater. 2020;399:123068.

    Article  CAS  Google Scholar 

  21. Kumar J, Shen X, Li B, Liu H, Zhao J. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag. 2020;113:32.

    Article  CAS  Google Scholar 

  22. Li L, Bian Y, Zhang X, Yao Y, Xue Q, Fan E, Wu F, Chen R. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Manag. 2019;85:437.

    Article  CAS  Google Scholar 

  23. Yang Y, Meng X, Cao H, Lin X, Liu C, Sun Y, Zhang Y, Sun Z. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chem. 2018;20(13):3121.

    Article  CAS  Google Scholar 

  24. Li H, Xing S, Liu Y, Li F, Guo H, Kuang G. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain Chem Eng. 2017;5(9):8017.

    Article  CAS  Google Scholar 

  25. Tao S, Li J, Wang L, Hu L, Zhou H. A method for recovering Li3PO4 from spent lithium iron phosphate cathode material through high-temperature activation. Ionics. 2019;25(12):5643.

    Article  CAS  Google Scholar 

  26. Liu K, Liu L, Tan Q, Li J. Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation. Green Chem. 2021;23(3):1344.

    Article  CAS  Google Scholar 

  27. He LP, Sun SY, Song XF, Yu JG. Recovery of cathode materials and Al from spent lithium-ion batteries by cleaning. Waste Manag. 2015;46:523.

    Article  CAS  Google Scholar 

  28. Zhao Y, Liang Z, Kang Y, Zhou Y, Li Y, He X, Wang L, Mai W, Wang X, Zhou G, Wang J, Li J, Tavajohi N, Li B. Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Mater. 2021;35:35.

    Google Scholar 

  29. Zhao Y, Fang LZ, Kang YQ, Wang L, Zhou YN, Liu XY, Li T, Li YX, Liang Z, Zhang ZX, Li BH. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met. 2021;40(6):1431.

    Article  CAS  Google Scholar 

  30. Bai Y, Muralidharan N, Li J, Essehli R, Belharouak I. Sustainable direct recycling of lithium-ion batteries via solvent recovery of electrode materials. Chemsuschem. 2020;13(21):5664.

    Article  CAS  Google Scholar 

  31. Bai Y, Hawley WB, Jafta CJ, Muralidharan N, Polzin BJ, Belharouak I. Sustainable recycling of cathode scraps via cyrene-based separation. Sustain Mater Technol. 2020;25:e00202.

    CAS  Google Scholar 

  32. Jing Q, Zhang J, Liu Y, Yang C, Ma B, Chen Y, Wang C. E-pH diagrams for the Li–Fe–P–H2O system from 298 to 473 K: thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material. J Phy Chem C. 2019;123(23):14207.

    Article  CAS  Google Scholar 

  33. Cai G, Fung KY, Ng KM, Wibowo C. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind Eng Chem Res. 2014;53(47):18245.

    Article  CAS  Google Scholar 

  34. Bai Y, Muralidharan N, Sun YK, Passerini S, Whittingham MS, Belharouak I. Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport. Mater Today. 2020;41:304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key-Area Research and Development Program of Guangdong Province (No. 2020B090919003), the National Natural Science Foundation of China (No. 51872157), Shenzhen Technical Plan Project (Nos. JCYJ20170412170911187 and JCYJ20170817161753629), Guangdong Technical Plan Project (No. 2017B090907005) and the Key Project of Core Technology Tackling of Guangdong City of Dongguan (No. 2019622119003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Zhao, Bao-Hua Li or Fei-Yu Kang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 812 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, MC., Zhao, Y., Kang, YQ. et al. Room-temperature extraction of individual elements from charged spent LiFePO4 batteries. Rare Met. 41, 1595–1604 (2022). https://doi.org/10.1007/s12598-021-01919-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01919-6

Keywords

Navigation