Skip to main content
Log in

Epitaxial integration of a perpendicularly magnetized ferrimagnetic metal on a ferroelectric oxide for electric-field control

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ferrimagnets, which contain the advantages of both ferromagnets (detectable moments) and antiferromagnets (ultrafast spin dynamics), have recently attracted great attention. Here, we report the optimization of epitaxial growth of a tetragonal perpendicularly magnetized ferrimagnet Mn2Ga on MgO. Electrical transport, magnetic properties and the anomalous Hall effect (AHE) were systematically studied. Furthermore, we successfully integrated high-quality epitaxial ferrimagnetic Mn2Ga thin films onto ferroelectric 0.7PbMg1/3Nb2/3O3–0.3PbTiO3 single crystals with a MgO buffer layer. It was found that the AHE of such a ferrimagnet can be effectively modulated by a small electric field over a large temperature range in a nonvolatile manner. This work thus demonstrates the great potential of ferrimagnets for developing high-density and low-power spintronic devices.

Graphical abstract

摘要

亚铁磁材料由于兼具铁磁材料(可探测磁矩)和反铁磁材料(超快自旋动力学)的优点,近年来受到了广泛关注。在本文中,我们报道了具有垂直磁化特性的四方相亚铁磁Mn2Ga在MgO基片上外延生长,并且系统地研究了其电输运、磁性和反常霍尔效应。进一步,我们成功地将高质量的亚铁磁Mn2Ga薄膜外延集成到具有MgO缓冲层的铁电PMN-PT单晶基片上。研究发现,亚铁磁Mn2Ga的反常霍尔效应可以被一个微小电场宽温域非易失地有效操控。因此,这项工作展示了亚铁磁体在开发高密度和低功耗自旋电子器件方面的应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feng Z, Yan H, Wang X, Guo H, Qin P, Zhou X, Chen Z, Wang H, Jiao Z, Leng Z, Hu Z, Zhang X, Wu H, Chen H, Wang J, Zhang T, Jiang C, Liu Z. Nonvolatile electric control of the anomalous Hall effect in an ultrathin magnetic metal. Adv Electron Mater. 2020;6(2):1901084.

    CAS  Google Scholar 

  2. Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.

    CAS  Google Scholar 

  3. Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.

    CAS  Google Scholar 

  4. Qin P, Feng Z, Zhou X, Guo H, Wang J, Yan H, Wang X, Chen H, Zhang X, Wu H, Zhu Z, Liu Z. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano. 2020;14(5):6242.

    CAS  Google Scholar 

  5. Guo H, Feng Z, Yan H, Liu J, Zhang J, Zhou X, Qin P, Cai J, Zeng Z, Zhang X, Wang X, Chen H, Wu H, Jiang C, Liu Z. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv Mater. 2020;32(26):2002300.

    CAS  Google Scholar 

  6. Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron. 2018;1(3):172.

    CAS  Google Scholar 

  7. Guo H, Feng Z, Qin P, Yan H, Zhou X, Hu S, Wang X, Zhang X, Wu H, Chen H, Qiu X, Liu Z. Fabrication and characterization of epitaxial ferrimagnetic Mn3Ga thin films with perpendicular magnetic anisotropy. Emergent Mater. 2021;4(3):589.

    CAS  Google Scholar 

  8. Finley J, Liu LQ. Spintronics with compensated ferrimagnets. Appl Phys Lett. 2020;116(11):110501.

    CAS  Google Scholar 

  9. Cutugno F, Sanchez-Tejerina L, Tomasello R, Carpentieri M, Finocchio G. Micromagnetic understanding of switching and self-oscillations in ferrimagnetic materials. Appl Phys Lett. 2021;118(5):589.

    Google Scholar 

  10. Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther CM, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach GSD. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat Nanotech. 2018;13(12):1154.

    CAS  Google Scholar 

  11. Nayak AK, Nicklas M, Chadov S, Khuntia P, Shekhar C, Kalache A, Baenitz M, Skourski Y, Guduru VK, Puri A, Zeitler U, Coey JMD, Felser C. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. Nat Mater. 2015;14(7):679.

    CAS  Google Scholar 

  12. Cai K, Zhu Z, Lee JM, Mishra R, Ren L, Pollard SD, He P, Liang G, Teo KL, Yang H. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat Electron. 2020;3(3):37.

    CAS  Google Scholar 

  13. Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, ZhangX NH, Oogane M, Ando Y. Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy. Phys Rev Lett. 2011;106(11):117201.

    CAS  Google Scholar 

  14. Ma QL, Kubota T, Mizukami S, Zhang XM, Naganuma H, Oogane M, Ando Y, Miyazaki T. Interface tailoring effect on magnetic properties and their utilization in MnGa-based perpendicular magnetic tunnel junctions. Phys Rev B. 2013;87(18):184426.

    Google Scholar 

  15. Awari N, Kovalev S, Fowley C, Rode K, Gallardo RA, Lau YC, Betto D, Thiyagarajah N, Green B, Yildirim O, Lindner J, Fassbender J, Coey M, Deac AM, Gensch M. Narrow-band tunable terahertz emission from ferrimagnetic Mn3-xGa thin films. Appl Phys Lett. 2016;109(3):032403.

    Google Scholar 

  16. Lee H, Sukegawa H, Mitani S, Hono K. Order parameters and magnetocrystalline anisotropy of off-stoichiometric D022 Mn2.36Ga epitaxial films grown on MgO (001) and SrTiO3 (001). J Appl Phys. 2015;118(3):033904.

    Google Scholar 

  17. Yan H, Feng Z, Qin P, Zhou X, Guo H, Wang X, Chen H, Zhang X, Wu H, Jiang C, Liu Z. Electric-field-controlled antiferromagnetic spintronic devices. Adv Mater. 2020;32(12):1905603.

    CAS  Google Scholar 

  18. Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.

    Google Scholar 

  19. Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang SL, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.

    CAS  Google Scholar 

  20. Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.

    CAS  Google Scholar 

  21. Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.

    Google Scholar 

  22. Liu ZQ, Li L, Gai Z, Clarkson JD, Hsu SL, Wong AT, Fan LS, Lin MW, Rouleau CM, Ward TZ, Lee HN, Sefat AS, Christen HM, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.

    CAS  Google Scholar 

  23. Feng Z, Qin P, Yang Y, Yan H, Guo H, Wang X, Zhou X, Han Y, Yi J, Qi D, Yu X, Breese MBH, Zhang X, Wu H, Chen H, Xiang H, Jiang C, Liu Z. A two-dimensional electron gas based on a 5s oxide with high room-temperature mobility and strain sensitivity. Acta Mater. 2021;204:116516.

    CAS  Google Scholar 

  24. Kurt H, Rode K, Stamenov P, Venkatesan M, Lau YC, Fonda E, Coey JMD. Cubic Mn2Ga thin films: crossing the spin gap with ruthenium. Phys Rev Lett. 2014;2(112):027201.

    Google Scholar 

  25. Zhu L, Nie S, Meng K, Pan D, Zhao J, Zheng H. Multifunctional L10-Mn1.5Ga films with ultrahigh coercivity, giant perpendicular magnetocrystalline anisotropy and large magnetic energy product. Adv Mater. 2012;33(24):4547.

    Google Scholar 

  26. Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527(7577):212.

    CAS  Google Scholar 

  27. Deshpande AR, Xu H, Wiezorek JMK. Effects of grain size on coercivity of combined-reaction-processed FePd intermetallics. Acta Mater. 2004;52(10):2903.

    CAS  Google Scholar 

  28. Chang MC, Niu Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys Rev Lett. 1995;75(7):1348.

    CAS  Google Scholar 

  29. Sundaram G, Niu Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys Rev B. 1999;59(23):14915.

    CAS  Google Scholar 

  30. Zhao ZP, Guo Q, Chen FH, Zhang KW, Jiang Y. Magnetic properties and anomalous Hall effect of Mn3Sn thin films controlled by defects and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 substrate. Rare Met. 2021;40(10):28.

    Google Scholar 

  31. Qiao K, Wang J, Hu F, Li J, Zhang C, Liu Y, Yu Z, Gao Y, Su J, Shen F, Zhou H, Bai X, Wang J, Franco V, Sun J, Shen B. Regulation of phase transition and magnetocaloric effect by ferroelectric domains in FeRh/PMN-PT heterojunctions. Acta Mater. 2020;191:2903.

    Google Scholar 

  32. Lukashev P, Sabirianov R, Belashchenko K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys Rev B. 2008;78(18):184414.

    Google Scholar 

  33. Zhou X, Feng Z, Qin P, Yan H, Hu S, Guo H, Wang X, Wu H, Zhang X, Chen H, Qiu X, Liu Z. Absence of superconductivity in Nd0.8Sr0.2NiOx thin films without chemical reduction. Rare Met. 2020;39(4):368.

    CAS  Google Scholar 

  34. Zhou X, Feng Z, Qin P, Yan H, Hu S, Guo H, Wang X, Nie P, Wu H, Zhang X, Chen H, Meng Z, Zhu Z, Liu Z. Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure. Rare Met. 2021;44(10):2847.

    Google Scholar 

  35. Zhou X, Liu Z. Nature of electrons from oxygen vacancies and polar catastrophe at LaAlO3/SrTiO3 interfaces. J Phys: Condens Matter. 2021;33(43):435601.

    CAS  Google Scholar 

  36. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    CAS  Google Scholar 

  37. Yu J, Le C, Li Z, Li L, Liu T, Liu Z, Zhang B, Shen B, Ruan B, Ren Z, Wang M. Coexistence of ferromagnetism, antiferromagnetism, and superconductivity in magnetically anisotropic (Eu, La)FeAs2. Npj Quantum Mater. 2021;6:63.

    CAS  Google Scholar 

  38. Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E, Perring T, Maier T, Yin Z, Haule K, Kotliar G, Dai P. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides. Nat Commun. 2013;4:2874.

    Google Scholar 

  39. Deng X, Chen C, Chen D, Cai X, Yin X, Xu C, Sun F, Li C, Li Y, Xu H, Ye M, Tian G, Fan Z, Hou Z, Qin M, Chen Y, Luo Z, Lu X, Zhou G, Chen L, Wang N, Zhu Y, Gao X, Liu J. Strain engineering of epitaxial oxide heterostructures beyond substrate limitations. Matter. 2021;4(4):1323.

    CAS  Google Scholar 

  40. Chen DY, Nelson CT, Zhu XH, Serrao CR, Clarkson JD, Wang Z, Gao Y, Hsu SL, Dedon LR, Chen ZH, Yi D, Liu HJ, Zeng DC, Chu YH, Liu J, Schlom DG, Ramesh R. A strain-driven antiferroelectric-to-ferroelectric phase transition in La-doped BiFeO3 thin films on Si. Nano Lett. 2017;17(9):5823.

    CAS  Google Scholar 

  41. Lu R, Ma Z, Zhang T, Jiang C. Chemical synthesis of SmCo5/Co magnetic nanocomposites. Rare Met. 2019;38(4):306.

    CAS  Google Scholar 

  42. Liu T, Zhao SX, Gou LL, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3-0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189.

    CAS  Google Scholar 

  43. Liu Z, Li C, Lü W, Huang X, Huang Z, Zeng S, Qiu X, Huang L, Annadi A, Chen J, Coey M, Venkatesan T, Ariando. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010.

    CAS  Google Scholar 

  44. Liu Z, Leusink D, Wang X, Lü W, Gopinadhan K, Annadi A, Zhao Y, Huang X, Zeng S, Huang Z, Srivastava A, Dhar S, Venkatesan T, Ariando. Metal-insulator transition in SrTiO3-x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.

    CAS  Google Scholar 

  45. Liu Z, Leusink D, Lü W, Wang X, Yang X, Gopinadhan K, Lin Y, Annadi A, Zhao Y, Barman A, Dhar S, Feng Y, Su H, Xiong G, Venkatesan T, Ariando. Reversible metal-insulator transition in LaAlO3 thin films mediated by intragap defects: an alternative mechanism for resistive switching. Phys Rev B. 2011;84(16):165106.

    Google Scholar 

  46. Zhou X, Zhang X, Yi J, Qin P, Feng Z, Jiang P, Zhong Z, Yan H, Wang X, Chen H, Wu H, Zhang X, Meng Z, Yu X, Breese MBH, Cao J, Wang J, Jiang C, Liu Z. Antiferromagnetism in Ni-based superconductors. Adv Mater. 2021. https://doi.org/10.1002/adma.202106117.

    Article  Google Scholar 

  47. Chen H, Feng Z, Yan H, Qin P, Zhou X, Guo H, Wang X, Wu H, Zhang X, Meng Z, Liu Z. Anomalous Hall effect in antiferromagnetic Cr thin films. Phys Rev B. 2021;104(6):064428.

    CAS  Google Scholar 

  48. Ma J, Zheng S, Das P, Lu P, Yu Y, Wu ZS. Sodium ion microscale electrochemical energy storage device: present status and future perspective. Small Struct. 2020;1(1):2000053.

    Google Scholar 

  49. Ke JC, Dai JY, Chen MZ, Wang L, Zhang C, Tang W, Yang J, Liu W, Li X, Lu Y, Cheng Q, Jin S, Cui TJ. Linear and nonlinear polarization syntheses and their programmable controls based on anisotropic time-domain digital coding metasurface. Small Struct. 2021;2(1):2000060.

    Google Scholar 

  50. Cui T, Zhang M, Sun L, Zhang S, Wang J, Bai B, Sun HB. Spin-symmetry-selective generation of ultracompact optical vortices in nanoapertures without chirality. Small Struct. 2020;1(2):2000008.

    Google Scholar 

  51. Zhao Z, Li W, Zeng Y, Huang X, Yun C, Zhang B, Hou Y. Structure engineering of 2D materials toward magnetism modulation. Small Struct. 2021;2(10):2100077.

    CAS  Google Scholar 

  52. Chu Z, Chu X, Zhao Y, Ye Q, Jiang J, Zhang X, You J. Emerging low-dimensional crystal structure of metal halide perovskite optoelectronic materials and devices. Small Struct. 2021;2(6):2000133.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52121001, 51822101, 51861135104 and 51771009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qi Liu.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Qin, PX., Feng, ZX. et al. Epitaxial integration of a perpendicularly magnetized ferrimagnetic metal on a ferroelectric oxide for electric-field control. Rare Met. 41, 1554–1562 (2022). https://doi.org/10.1007/s12598-021-01898-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01898-8

Keywords

Navigation