Skip to main content
Log in

Facile preparation of covalent organic frameworks@alginate composite beads for enhanced uranium(VI) adsorption

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) have broad application prospects in adsorption and separation. Yet, as COFs are generally in powder form, their superior performance at the laboratory scale is difficult to transfer into pilot- or industrial-scale use. Thus, there is a strong and urgent need to structure COFs into monolithic materials. Herein, a facile strategy was developed to prepare COFs@alginate composite beads. Three composite beads comprising different COFs including TpPa-1 (2,4,6-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-1) as monomers), TpDb (Tp and 2,5-diaminobenzonitrile (Db) as monomers) and TpTt (Tp and 1,3,5-triazine-2,4,6-triamine (Tt) as monomers) with controlled COF loading and product size have been facilely achieved via this strategy, validating the applicability of this method. Furthermore, the representative TpDb@alginate composite beads showed good adsorption performance of uranium(VI) in aqueous solution with high adsorption capacity (635 mg·g−1), good interference immunity and recyclability. This work offers a practical approach for incorporation of COFs into polymer matrix, which can serve as potential adsorbents for radioactive wastewater treatment.

Graphical abstract

摘要

共价有机骨架(COFs)在吸附分离方面具有广阔的应用前景。然而, 常规合成的COFs通常是粉末状的, 它们在实验室规模上的优异性能很难转化为工业规模的使用。因此, 急需将COFs制备成整体材料。本文开发了一种简便的COFs@海藻酸复合微珠的制备方法。 通过这种策略, 可以容易地获得三种不同COFs的复合微珠, 包括TpPa-1(2,4,6-三甲酰基间苯三酚(Tp)和对苯二胺(Pa-1)作为单体), TpDb(Tp和2,5-二氨基苯腈(Db)作为单体)和TpTt(Tp和1,3,5-三嗪-2,4,6-三胺(Tt)作为单体), 而且微珠的尺寸和COFs的含量是可以调控的。此外, TpDb@海藻酸盐复合微珠对水溶液中的铀表现出良好的吸附性能, 吸附容量高达635 mg·g-1, 且具有很强的抗干扰能力以及可回收利用性。本工作为制备COFs与聚合物复合吸附剂材料提供了一条切实可行的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shan Z, Wu X, Xu B, Hong YL, Wu M, Wang Y, Nishiyama Y, Zhu J, Horike S, Kitagawa S, Zhang G. Dynamic transformation between covalent organic frameworks and discrete organic cages. J Am Chem Soc. 2020;142(51):21279.

    CAS  Google Scholar 

  2. Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013;42(2):548.

    CAS  Google Scholar 

  3. She P, Qin Y, Wang X, Zhang Q. Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv Mater. 2021. https://doi.org/10.1002/adma.202101175.

    Article  Google Scholar 

  4. Wang J, Zhuang S. Covalent organic frameworks (COFs) for environmental applications. Coord Chem Rev. 2019;400:213046.

    CAS  Google Scholar 

  5. He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C, Pan T, Ma F, Chen J, Yuan M, Zhang Y, Chen L, Zhou R, Han Y, Chai Z, Wang S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem. 2021;7(3):699.

    CAS  Google Scholar 

  6. Du Y, Yang H, Whiteley JM, Wan S, Jin Y, Lee SH, Zhang W. Ionic covalent organic frameworks with spiroborate linkage. Angew Chem Int Ed. 2016;55(5):1737.

    CAS  Google Scholar 

  7. Yang Y, Faheem M, Wang L, Meng Q, Sha H, Yang N, Yuan Y, Zhu G. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent Sci. 2018;4(6):748.

    CAS  Google Scholar 

  8. Pramudya Y, Mendoza-Cortes JL. Design principles for high H2 storage using chelation of abundant transition metals in covalent organic frameworks for 0–700 bar at 298 K. J Am Chem Soc. 2016;138(46):15204.

    CAS  Google Scholar 

  9. Zeng Y, Zou R, Zhao Y. Covalent organic frameworks for CO2 capture. Adv Mater. 2016;28(15):2855.

    CAS  Google Scholar 

  10. Zhi Y, Wang Z, Zhang HL, Zhang Q. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small. 2020;16(24):2001070.

    CAS  Google Scholar 

  11. Sun Q, Aguila B, Perman J, Nguyen N, Ma S. Flexibility matters: cooperative active sites in covalent organic framework and threaded ionic polymer. J Am Chem Soc. 2016;138(48):15790.

    CAS  Google Scholar 

  12. Lin DY, Duan P, Yang WT, Huang XJ, Zhao YJ, Wang CT, Pan QH. Facile fabrication of melamine sponge@covalent organic framework composite for enhanced degradation of tetracycline under visible light. Chem Eng J. 2022;430:132817.

    CAS  Google Scholar 

  13. Yu F, Liu W, Li B, Tian D, Zuo JL, Zhang Q. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew Chem Int Ed. 2019;58(45):16101.

    CAS  Google Scholar 

  14. Yao CJ, Wu Z, Xie J, Yu F, Guo W, Xu ZJ, Li DS, Zhang S, Zhang Q. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem. 2020;13(9):2457.

    CAS  Google Scholar 

  15. Zhang H, Gu C, Yao MS, Kitagawa S. Hybridization of emerging crystalline porous materials: synthesis dimensionality and electrochemical energy storage application. Adv Energy Mater. 2021. https://doi.org/10.1002/aenm.202100321.

    Article  Google Scholar 

  16. Wu C, Wang X, Zhu T, Li P, Xia S. Covalent organic frameworks embedded membrane via acetic-acid-catalyzed interfacial polymerization for dyes separation: enhanced permeability and selectivity. Chemosphere. 2020;261:127580.

    CAS  Google Scholar 

  17. Zhong X, Liang W, Lu Z, Qiu M, Hu B. Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal. J Mol Liq. 2021;323:114603.

    CAS  Google Scholar 

  18. Xu S, Li Z, Zhang L, Zhang W, Li D. In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography. Talanta. 2021;221:121612.

    CAS  Google Scholar 

  19. Chen Y, Yang D, Yoon YJ, Pang X, Wang Z, Jung J, He Y, Harn YW, He M, Zhang S, Zhang G, Lin Z. Hairy uniform permanently ligated hollow nanoparticles with precise dimension control and tunable optical properties. J Am Chem Soc. 2017;139(37):12956.

    CAS  Google Scholar 

  20. Wang CH, Hu LM, Wang ZF, Zhang M. Electrospun and in situ self-polymerization of polyacrylonitrile containing gadolinium nanofibers for thermal neutron protection. Rare Met. 2018;38(3):252.

    Google Scholar 

  21. Cui BC, Li J, Lin YH, Shen Y, Li M, Deng XL, Nan CW. Polymer-infiltrated layered silicates for dental restorative materials. Rare Met. 2019;38(11):1003.

    CAS  Google Scholar 

  22. Chen Y, Wang Z, Harn YW, Pan S, Li Z, Lin S, Peng J, Zhang G, Lin Z. Resolving optical and catalytic activities in thermoresponsive nanoparticles by permanent ligation with temperature-sensitive polymers. Angew Chem Int Ed. 2019;58(34):11910.

    CAS  Google Scholar 

  23. Zhang X, Pan S, Song H, Guo W, Zhao S, Chen G, Zhang Q, Jin H, Zhang L, Chen Y, Wang S. Polymer-inorganic thermoelectric nanomaterials: electrical properties, interfacial chemistry engineering, and devices. Front Chem. 2021;9:677821.

    CAS  Google Scholar 

  24. Yang S, Peng L, Syzgantseva OA, Trukhina O, Kochetygov I, Justin A, Sun DT, Abedini H, Syzgantseva MA, Oveisi E, Lu G, Queen WL. Preparation of highly porous metal-organic framework beads for metal extraction from liquid streams. J Am Chem Soc. 2020;142(31):13415.

    CAS  Google Scholar 

  25. Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N. Fabrication of alginate microspheres for drug delivery: a review. Int J Biol Macromol. 2020;153:1035.

    CAS  Google Scholar 

  26. Bian C, Cheng Y, Zhu W, Tong R, Hu M, Gang T. A novel optical fiber mach–zehnder interferometer based on the calcium alginate hydrogel film for humidity sensing. IEEE Sens J. 2020;20(11):5759.

    CAS  Google Scholar 

  27. Zhao X, Wang X, Lou T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J Hazard Mater. 2021;403:124054.

    CAS  Google Scholar 

  28. Wu G, Jin K, Liu L, Zhang H. A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties. Soft Matter. 2020;16(13):3319.

    CAS  Google Scholar 

  29. Gong J, He C, Zhang J, Wang L. GO-P25@SA gel beads with excellent separation performance for photocatalytic degradation of rhodamine B. Res Chem Intermed. 2021;47(6):2331.

    CAS  Google Scholar 

  30. Nithya Priya V, Rajkumar M, Mobika J, Linto Sibi SP. Alginate coated layered double hydroxide/reduced graphene oxide nanocomposites for removal of toxic As(V) from wastewater. Physica E. 2021;127:114527.

    CAS  Google Scholar 

  31. Fu J, Zhu Y, Cheng F, Zhang S, Xiu T, Hu Y, Yang S. A composite chitosan derivative nanoparticle to stabilize a W1/O/W2 emulsion: preparation and characterization. Carbohyd Polym. 2021;256:117533.

    CAS  Google Scholar 

  32. Wang D, Li Z, Zhang Q, Liu J, Yang Y, Han J, Wang L. Small things make a big difference: the small-molecule cross-linker of robust water-soluble network binders for stable Si anodes. Chem Res Chin U. 2021;37(2):304.

    CAS  Google Scholar 

  33. Song Y, Wang N, Yang LY, Wang YG, Yu D, Ouyang XK. Facile fabrication of ZIF-8/calcium alginate microparticles for highly efficient adsorption of Pb(II) from aqueous solutions. Ind Eng Chem Res. 2019;58(16):6394.

    CAS  Google Scholar 

  34. Wang N, Zhang G, Wang L, Li J, An Q, Ji S. Pervaporation dehydration of acetic acid using NH2-UiO-66/PEI mixed matrix membranes. Sep Purif Technol. 2017;186:20.

    CAS  Google Scholar 

  35. Yang H, Wu H, Pan F, Li Z, Ding H, Liu G, Jiang Z, Zhang P, Cao X, Wang B. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. J Membrane Sci. 2016;520:583.

    CAS  Google Scholar 

  36. Yang H, Cheng X, Cheng X, Pan F, Wu H, Liu G, Song Y, Cao X, Jiang Z. Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J Membrane Sci. 2018;565:331.

    CAS  Google Scholar 

  37. Yang H, Wu H, Pan F, Wang M, Jiang Z, Cheng Q, Huang C. Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chin J Chem Eng. 2020;28(1):90.

    CAS  Google Scholar 

  38. Li ZD, Zhang HQ, Xiong XH, Luo F. U(VI) adsorption onto covalent organic frameworks-TpPa-1. J Solid State Chem. 2019;277:484.

    CAS  Google Scholar 

  39. Yuan M, Wang X, Chen L, Zhang M, He L, Ma F, Liu W, Wang S. Tailoring pore structure and morphologies in covalent organic frameworks for Xe/Kr capture and separation. Chem Res Chin U. 2021;37(3):679.

    CAS  Google Scholar 

  40. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater. 2018;30(20):1705479.

    Google Scholar 

  41. Bhadra M, Kandambeth S, Sahoo MK, Addicoat M, Balaraman E, Banerjee R. Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins. J Am Chem Soc. 2019;141(15):6152.

    CAS  Google Scholar 

  42. Yu Y, He Y, Mu Z, Zhao Y, Kong K, Liu Z, Tang R. Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness. Adv Funct Mater. 2019;30(6):1908556.

    Google Scholar 

  43. Cho Y, Kim J, Elabd A, Choi S, Park K, Kwon TW, Lee J, Char K, Coskun A, Choi JW. A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv Mater. 2019;31(51):1905048.

    CAS  Google Scholar 

  44. Ma K, Li P, Xin JH, Chen Y, Chen Z, Goswami S, Liu X, Kato S, Chen H, Zhang X, Bai J, Wasson MC, Maldonado RR, Snurr RQ, Farha OK. Ultrastable mesoporous hydrogen-bonded organic framework-based fiber composites toward mustard gas detoxification. Cell Rep Phys Sci. 2020;1(2):10024.

    Google Scholar 

  45. Zhong X, Liang W, Lu Z, Hu B. Highly efficient enrichment mechanism of U(VI) and Eu(III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl Surf Sci. 2020;504:144403.

    CAS  Google Scholar 

  46. Wang F, Chen Z, Yang W, Liu L, Ren G, Liu Y, Pan Q. Preparation and adsorption performance for U(VI) of ZnO@ZIF-8 core@shell microspheres. Chem J Chin Univer. 2019;40(1):24.

  47. Liu L, Yang W, Gu D, Zhao X, Pan Q. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U(VI). Front Chem. 2019;7:607.

    CAS  Google Scholar 

  48. Qin X, Yang W, Yang Y, Gu D, Guo D, Pan Q. A zinc metal-organic framework for concurrent adsorption and detection of uranium. Inorg Chem. 2020;59(14):9857.

    CAS  Google Scholar 

  49. Zhou L, Liu J, Liu Z. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater. 2009;172(1):439.

    CAS  Google Scholar 

  50. Zhang YD, Luo XG, Huang ST, Wang J, Zong YL, Zhou J, Ou MH. A sorbent of expanded rice husk powder for removal of uranyl ion from aqueous solution. Rare Met. 2016;35(5):425.

    CAS  Google Scholar 

  51. Wang D, Song J, Lin S, Wen J, Ma C, Yuan Y, Lei M, Wang X, Wang N, Wu H. A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater. Adv Funct Mater. 2019;29(32):1901009.

    Google Scholar 

  52. Gok C, Aytas S. Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater. 2009;168(1):369.

    CAS  Google Scholar 

  53. Yi X, He J, Guo Y, Han Z, Yang M, Jin J, Gu J, Ou M, Xu X. Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu(II) and U(VI) from aqueous solutions. Ecotox Environ Safe. 2018;147:699.

    CAS  Google Scholar 

  54. Yin J, Yang S, He W, Zhao T, Li C, Hua D. Biogene-derived aerogels for simultaneously selective adsorption of uranium(VI) and strontium(II) by co-imprinting method. Sep Purif Technol. 2021;271:118849.

    CAS  Google Scholar 

  55. Bai Z, Liu Q, Zhang H, Yu J, Chen R, Liu J, Song D, Li R, Wang J. Anti-biofouling and water-stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater. ACS Appl Mater Inter. 2020;12(15):18012.

    CAS  Google Scholar 

  56. He YR, Li XL, Li XL, Tan ZY, Zhang D, Chen HB. Aerogel based on melamine-formaldehyde and alginate: simply removing of uranium from aqueous solutions. J Mol Liq. 2019;289:111154.

    CAS  Google Scholar 

  57. Jiang X, Wang H, Wang Q, Hu E, Duan Y. Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. J Clean Prod. 2020;247:119162.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Hainan Province (No. 2019RC005), the National Natural Science Foundation of China (Nos. 22061014 and 21761010) and Hainan University Start-Up Fund (No. KYQD(ZR)1806).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Ting Yang or Qin-He Pan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Lin, DY., Yang, WT. et al. Facile preparation of covalent organic frameworks@alginate composite beads for enhanced uranium(VI) adsorption. Rare Met. 41, 1323–1331 (2022). https://doi.org/10.1007/s12598-021-01884-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01884-0

Keywords

Navigation