Skip to main content
Log in

Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Here, bulk CoCrFeMnNi high-entropy alloy was prepared via laser melting deposition, and its microstructure and mechanical properties at room and cryogenic temperature were investigated by a series of microstructural characterizations and mechanical tests. The results showed that the as-built samples possessed a single fcc phase and highly dense microstructures. Compared to the mechanical properties at room temperature, tensile properties, microhardness and wear resistance of the as-built samples showed a significant enhancement at cryogenic temperature, which was attributed to the deformation mechanism converting from dislocation slipping to deformation twinning at cryogenic temperature. The formation of deformation nanotwins significantly improved the deformation resistance in cryogenic conditions, and the sliding wear in the liquid nitrogen could decrease the oxygen concentration, suppress the generation of oxide particles and thus enhance the wear resistance.

Graphical abstract

摘要

本文采用激光熔化沉积技术制备了块体CoCrFeMnNi高熵合金, 并通过一系列组织表征和力学试验研究了其室温和低温下的组织和力学性能。结果表明,制备的样品具有单一的面心立方结构和致密的微观结构。与室温相比, 低温下的拉伸性能、显微硬度和耐磨性均有显著提高, 这与其低温下变形机制由位错滑移向变形孪生转变有关。变形纳米孪晶的形成显著提高了低温变形抗力, 液氮条件下的滑动磨损进一步降低了氧浓度, 抑制了氧化物颗粒的生成, 从而提高了其耐磨性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377(1):213.

    Article  Google Scholar 

  2. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    Article  CAS  Google Scholar 

  3. Senkov ON, Miller JD, Miracle DB, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2017;6:6529.

    Article  Google Scholar 

  4. Li N, Wu SX, Ouyang D, Zhang JJ, Liu L. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting. J Alloys Compd. 2020;822:153695.

    Article  CAS  Google Scholar 

  5. Guo YX, Liu QB, Shang XJ. In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding. Rare Met. 2020;39(10):1190.

    Article  CAS  Google Scholar 

  6. Yang HX, Li JS, Guo T, Wang WY, Kou HC, Wang J. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156.

    Article  CAS  Google Scholar 

  7. Niu SZ, Kou HC, Wang J, Li JS. Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures. Rare Met. 2021;40(9):2508.

    Article  Google Scholar 

  8. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1.

    Article  Google Scholar 

  9. Li ZZ, Zhao ST, Ritchie RO, Meyers MA. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci. 2019;102:296.

    Article  CAS  Google Scholar 

  10. Sathiyamoorthi P, Kim HS. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog Mater Sci. 2020;121:100709.

    Google Scholar 

  11. Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George EP. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high entropy alloy. Acta Mater. 2013;61(15):5743.

    Article  CAS  Google Scholar 

  12. Fu WJ, Zheng W, Huang YJ, Guo FM, Jiang SS, Xue P, Ren Y, Fan HB, Ning ZL, Sun JF. Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy. Mater Sci Eng A. 2020;789:139579.

    Article  CAS  Google Scholar 

  13. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153.

    Article  CAS  Google Scholar 

  14. Wei CB, Lu YP, Du XH, Li TJ, Wang TM, Liaw PK. Remarkable strength of a non-equiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy at cryogenic temperatures. Mater Sci Eng A. 2021;818:141446.

    Article  CAS  Google Scholar 

  15. Wang P, Huang PF, Ng FL, Sin WJ, Lu SL, Nai MLS, Dong ZL, Wei J. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater Des. 2019;168:107576.

    Article  CAS  Google Scholar 

  16. Guo J, Goh M, Zhu ZG, Lee XH, Nai MLS, Wei J. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater Des. 2018;153:211.

    Article  CAS  Google Scholar 

  17. Chen S, Aitken ZH, Pattamatta S, Wu ZX, Yu ZG, Banerjee R, Srolovitz DJ, Liaw PK, Zhang YW. Chemical-affinity disparity and exclusivity drive atomic segregation, short-range ordering, and cluster formation in high-entropy alloys. Acta Mater. 2021;206:116638.

    Article  CAS  Google Scholar 

  18. Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2019;38(12):1153.

    Article  CAS  Google Scholar 

  19. Xu ZK, Zhu ZG, Wang P, Meenashisundaram GK, Nai SML, Wei J. Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing. Addit Manuf. 2020;35:101441.

    CAS  Google Scholar 

  20. Melia MA, Carroll JD, Whetten SR, Esmaeely SN, Locke J, White E, Anderson I, Chandross M, Michael JR, Argibay N, Schindelholz EJ, Kustas A. Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy. Addit Manuf. 2019;29:100833.

    CAS  Google Scholar 

  21. Tang YT, Panwisawas C, Ghoussoub JN, Gong YL, Clark JWG, Németh AAN, McCartney DG, Reed RC. Alloys-by-design: application to new superalloys for additive manufacturing. Acta Mater. 2021;202:417.

    Article  CAS  Google Scholar 

  22. Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci. 2020;107:100590.

    Article  CAS  Google Scholar 

  23. King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, Rubenchik AM. Laser powder bed fusion additive manufacturing of metals: physics, computational, and materials challenges. Appl Phys Rev. 2015;2(4):041304.

    Article  Google Scholar 

  24. Gao XY, Lu YZ. Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater Lett. 2019;236:77.

    Article  CAS  Google Scholar 

  25. Chew Y, Bi GJ, Zhu ZG, Ng FL, Weng F, Liu SB, Nai SML, Lee BY. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater Sci Eng A. 2019;744:137.

    Article  CAS  Google Scholar 

  26. Li HG, Huang YJ, Jiang SS, Lu YZ, Gao XY, Lu X, Ning ZL, Sun JF. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy. Mater Des. 2021;197:109262.

    Article  CAS  Google Scholar 

  27. Masoomi M, Pegues JW, Thompson SM, Shamsaei N. A numerical and experimental investigation of convective heat transfer during laser-powder bed fusion. Addit Manuf. 2018;22:729.

    CAS  Google Scholar 

  28. Wang Z, Wang C, Zhao YL, Hsu YC, Li CL, Kai JJ, Liu CT, Hsueh CH. High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins. Int J Plast. 2020;131:102726.

    Article  CAS  Google Scholar 

  29. Guo WQ, Su J, Lu WJ, Liebscher CH, Kirchlechner C, Ikeda YJ, Körmann F, Liu X, Xue YF, Dehm G. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy. Acta Mater. 2020;185:45.

    Article  CAS  Google Scholar 

  30. Laplanche G, Kostka A, Horst OM, Eggeler G, George EP. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016;118:152.

    Article  CAS  Google Scholar 

  31. Zhou P, Liang ZY, Liu RD, Huang MX. Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater. 2016;111:96.

    Article  CAS  Google Scholar 

  32. Wang SB, Wu MX, Shu D, Zhu GL, Wang DH, Sun BD. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Mater. 2020;201:517.

    Article  CAS  Google Scholar 

  33. Weng ZJ, Gu KX, Cui C, Cai HK, Liu XZ, Wang JJ. Microstructure evolution and wear behavior of titanium alloy under cryogenic dry sliding wear condition. Mater Charact. 2020;165:110385.

    Article  CAS  Google Scholar 

  34. Xiao JK, Tan H, Wu YQ, Chen J, Zhang C. Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying. Surf Coat Tech. 2020;385:125430.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52171154, 52071118, 51871076 and 51827801) and the National Key Research and Development Program of China (No. 2018YFB1105200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Jiang Huang or Hong-Bo Fan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HG., Che, PC., Yang, XK. et al. Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature. Rare Met. 41, 1210–1216 (2022). https://doi.org/10.1007/s12598-021-01867-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01867-1

Navigation