Skip to main content

Advertisement

Log in

Phosphorus-doping and oxygen vacancy endowing anatase TiO2 with excellent sodium storage performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 08 January 2022

This article has been updated

Abstract

Titanium dioxide is considered to be promising anode for sodium-ion batteries due to stable structure during the charge/discharge process. However, its practical application is hindered by the slow electron/ion transport. Herein, phosphorus-doped anatase TiO2 nanoparticles with oxygen vacancies are successfully synthesized and utilized as high-performance sodium-storage materials. The dual strategy of phosphorus-doping and oxygen vacancies can concurrently boost electronic conductivity and adjust ion diffusion kinetics. They significantly contribute to the improved rate performance (167 mAh·g−1 at 20.0C) and stable cycling (95.9% after 2000 cycles at 20.0C). The proposed dual strategy can be potentially used to improve other oxide anodes for rechargeable batteries.

摘要

二氧化钛是一种非常有潜力的钠离子电池负极材料。然而, TiO2属于半导体材料, 离子扩散速率小和电子电导率低, 限制了其发展空间。本文成功合成了具有氧空位和磷掺杂的锐钛矿型TiO2纳米颗粒, 并将其用作钠离子电池负极材料。引入磷掺杂和氧空位的双重策略可以同时提高电子电导率和调节离子扩散动力学, 这对于提高高倍率性能 (在20.0 C下为容量为167 mAh·g-1) 和循环稳定性 (在20.0 C下循环2000次后容量保持率为95.9%) 起着重要作用。这项工作对改善二次电池氧化物负极材料的稳定性和储钠性能提供了可行的策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Kong L, Tang C, Peng HJ, Huang JQ, Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020;1(1):1007.

    Google Scholar 

  2. Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ. Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A. 2015;3(18):9354.

    Google Scholar 

  3. Wang N, Chu C, Xu X, Du Y, Yang J, Bai Z, Dou S. Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv Energy Mater. 2018;8(27):1801888.

    Google Scholar 

  4. Zheng SM, Tian YR, Liu YX, Wang S, Hu CQ, Wang B, Wang KM. Alloy anodes for sodium-ion batteries. Rare Met. 2020;40(2):272.

    Google Scholar 

  5. Qi S, Wang H, He J, Liu J, Cui C, Wu M, Li F, Feng Y, Ma J. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Sci Bull. 2021;66(7):685.

    CAS  Google Scholar 

  6. Li F, He J, Liu J, Wu M, Hou Y, Wang H, Qi S, Liu Q, Hu J, Ma J. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew Chem Int Ed. 2021;60(12):6601.

    Google Scholar 

  7. Bommier C, Ji X. Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small. 2018;14(16):1703576.

    Google Scholar 

  8. Deng Z, Lin X, Huang Z, Meng J, Zhong Y, Ma G, Zhou Y, Shen Y, Ding H, Huang Y. Recent progress on advanced imaging techniques for lithium-ion batteries. Adv Energy Mater. 2018;8(4):1701428.

    Google Scholar 

  9. Liang K, He H, Ren Y, Wang H, Liao Y, Huang X. Porous lithium titanate nanosheets as an advanced anode material for sodium ion batteries. J Mater Sci. 2019;55(10):4373.

    Google Scholar 

  10. Liang K, Huang X, Hong X, Liao Y, Ren Y, Wang H. Sulfur and nitrogen-doped Li4Ti5O12/rGO as an anode material for advanced sodium-ion batteries. J Alloys Compd. 2021;857:158190.

    CAS  Google Scholar 

  11. Peng PP, Wu YR, Li XZ, Zhang JH, Li YW, Cui P, Yi TF. Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials. Rare Met. 2021;40(11):3050.

    Google Scholar 

  12. Zhang ZJ, Zhao J, Qiao ZJ, Wang JM, Sun SH, Fu WX, Zhang XY, Yu ZY, Dou YH, Kang JL, Yuan D, Feng YZ, Ma JM. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries. Rare Met. 2020;40(2):396.

    Google Scholar 

  13. Qi S, He J, Liu J, Wang H, Wu M, Li F, Wu D, Li X, Ma J. Phosphonium bromides regulating solid electrolyte interphase components and optimizing solvation sheath structure for suppressing lithium dendrite growth. Adv Funct Mater. 2020;31(11):2009013.

    Google Scholar 

  14. Lou S, Zhao Y, Wang J, Yin G, Du C, Sun X. Ti-based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors. Small. 2019;15(52):1904740.

    CAS  Google Scholar 

  15. Guo S, Yi J, Sun Y, Zhou H. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ Sci. 2016;9(10):2978.

    CAS  Google Scholar 

  16. Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7042.

    Google Scholar 

  17. Lewis C, Li YR, Wang L, Li J, Stach E, Takeuchi K, Marschilok A, Takeuchi E, Wong S. Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries. ACS Sustain Chem Eng. 2016;4(12):6302.

    Google Scholar 

  18. Lee G, Kang JK. Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization enabling high performances in hybrid sodium-ion energy storages. Adv Sci. 2020;7(6):1902986.

    CAS  Google Scholar 

  19. Gan Q, He H, Zhu Y, Wang Z, Qin N, Gu S, Li Z, Luo W, Lu Z. Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano. 2019;13(8):9253.

    Google Scholar 

  20. Zhang W, Luo N, Huang S, Wu NL, Wei M. Sulfur-doped anatase TiO2 as an anode for high-performance sodium-ion batteries. ACS Appl Energy Mater. 2019;2(5):3792.

    Google Scholar 

  21. Hwang J, Myung S, Lee J, Abouimrane A, Belharouak I, Sun Y. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy. 2015;16:218. https://doi.org/10.1016/j.nanoen.2015.06.017.

    Article  CAS  Google Scholar 

  22. Cao M, Tao L, Lv X, Bu Y, Li M, Yin H, Zhu M, Zhong Z, Shen Y, Wang M. Phosphorus-doped TiO2-B nanowire arrays boosting robust pseudocapacitive properties for lithium storage. J Power Sources. 2018;396:329.

    Google Scholar 

  23. Wang Q, He H, Luan J, Tang Y, Huang D, Peng Z, Wang H. Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochim Acta. 2019;309:248.

    Google Scholar 

  24. Ni Q, Dong R, Bai Y, Wang Z, Ren H, Sean S, Wu F, Xu H, Wu C. Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Mater. 2020;25:905.

    Google Scholar 

  25. Bai YL, Wu XY, Liu YS, Ma C, Wei X, Wang KX, Chen JS. Dandelion-clock-inspired preparation of core-shell TiO2@MoS2 composites for high performance sodium ion storage. J Alloys Compd. 2020;815:152386.

    CAS  Google Scholar 

  26. Chen J, Luo B, Chen Q, Li F, Guo Y, Wu T, Peng P, Qin X, Wu G, Cui M, Liu L, Chu L, Jiang B, Li Y, Gong X, Chai Y, Yang Y, Chen Y, Huang W, Liu X, Li M. Localized electrons enhanced ion transport for ultrafast electrochemical energy storage. Adv Mater. 2020;32(14):1905578.

    CAS  Google Scholar 

  27. Wang Y, Zhu W, Guerfi A, Kim C, Zaghib K. Roles of Ti in electrode materials for sodium-ion batteries. Front Energy. 2019. https://doi.org/10.3389/fenrg.2019.00028.

  28. Bai YL, Xarapatgvl R, Wu XY, Liu X, Liu YS, Wang KX, Chen JS. Core-shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating. Nanoscale. 2019;11(38):17872.

    Google Scholar 

  29. He H, Huang D, Pang W, Sun D, Wang Q, Tang Y, Ji X, Guo Z, Wang H. Plasma-induced amorphous shell and deep cation-site s doping endow tio2 with extraordinary sodium storage performance. Adv Mater. 2018;30(26):1801013.

    Google Scholar 

  30. He H, Zhang Q, Wang H, Zhang H, Li J, Peng Z, Tang Y, Shao M. Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J Power Sources. 2017;354:185.

    Google Scholar 

  31. Ni J, Fu S, Yuan Y, Ma L, Jiang Y, Li L, Lu J. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv Mater. 2018;30(6):1704337.

    Google Scholar 

  32. Chen J, Ding Z, Wang C, Hou H, Zhang Y, Wang C, Zou G, Ji X. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl Mater Interfaces. 2016;8(14):9148.

    Google Scholar 

  33. Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater. 2017;29(7):1604167.

    Google Scholar 

  34. Xia Q, Huang Y, Xiao J, Wang L, Lin Z, Li W, Liu H, Gu Q, Liu HK, Chou SL. Phosphorus-modulation-triggered surface disorder in titanium dioxide nanocrystals enables exceptional sodium-storage performance. Angew Chem Int Ed Engl. 2019;58(12):4022.

    CAS  Google Scholar 

  35. Yan D, Yu C, Zhang X, Li J, Li J, Lu T, Pan L. Enhanced electrochemical performances of anatase TiO2 nanotubes by synergetic doping of Ni and N for sodium-ion batteries. Electrochim Acta. 2017;254:134.

    Google Scholar 

  36. Tian J, Li J, Zhang Y, Yu XY, Hong Z. Carbon-coated CoSe2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. J Mater Chem A. 2019;7(37):21404.

    CAS  Google Scholar 

  37. Song T, Chen H, Li Z, Xu Q, Liu H, Wang Y, Xia Y. Creating an air-stable sulfur-doped black phosphorus-TiO2 composite as high-performance anode material for sodium-ion storage. Adv Funct Mater. 2019;29(22):1900535.

    Google Scholar 

  38. Zhang Y, Wang C, Hou H, Zou G, Ji X. Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv Energy Mater. 2017;7(4):1600173.

    Google Scholar 

  39. Li B, Anwer S, Huang X, Luo S, Fu J, Liao K. Nitrogen-doped carbon encapsulated in mesoporous TiO2 nanotubes for fast capacitive sodium storage. J Energy Chem. 2021;55:205.

    Google Scholar 

  40. Ma L, Gao X, Zhang W, Yuan H, Hu Y, Zhu G, Chen R, Chen T, Tie Z, Liu J, Wu T, Jin Z. Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano Energy. 2018;53:94.

    Google Scholar 

  41. Wu N, Qiao X, Shen J, Liu G, Sun T, Wu H, Hou H, Liu X, Zhang Y, Ji X. Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim Acta. 2019;299:544.

    Google Scholar 

  42. Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen G, Wu HB, Lu Y. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano. 2017;11(3):2952.

    CAS  Google Scholar 

  43. Liu DS, Liu DH, Hou BH, Wang YY, Guo JZ, Ning QL, Wu XL. 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta. 2018;264:295.

    Google Scholar 

  44. Li L, Zhang N, Su Y, Zhao J, Song Z, Qian D, Wu H, Tahir M, Saeed A, Ding S. Fluorine dissolution-induced capacity degradation for fluorophosphate-based cathode materials. ACS Appl Mater Interfaces. 2021;13(20):23789.

    Google Scholar 

  45. Zhao B, Liu Q, Chen Y, Liu Q, Yu Q, Wu HB. Interface-induced pseudocapacitance in nonporous heterogeneous particles for high volumetric sodium storage. Adv Funct Mater. 2020;30(42):2002019.

    CAS  Google Scholar 

  46. Wu L, Bresser D, Buchholz D, Giffin G, Castro C, Ochel A, Passerini S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv Energy Mater. 2015;5(2):1401142.

    Google Scholar 

  47. Lin D, Li K, Wang Q, Lyu L, Li B, Zhou L. Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO2 nanowires. J Mater Chem A. 2019;7(33):19299.

    Google Scholar 

  48. Wu CP, Xie KX, He JP, Wang QP, Ma JM, Yang S, Wang QH. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2020;40(1):52.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 91961126 and 22078029), Zhejiang Provincial Natural Science Foundation (No. LR21E020003) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX21_1180). The authors also thank Jiangsu Development & Reform Commission and Changzhou Development & Reform Commission for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Bin Wu or Yu-Rong Ren.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Additional information

The original online version of this article was revised due to the update in the affiliation of the 5th author (Corresponding author).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 7220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, HS., Qi, YL., Liang, K. et al. Phosphorus-doping and oxygen vacancy endowing anatase TiO2 with excellent sodium storage performance. Rare Met. 41, 1284–1293 (2022). https://doi.org/10.1007/s12598-021-01864-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01864-4

Keywords

Navigation