Skip to main content
Log in

Oxidation behavior of Al0.2CoCrFeNi high-entropy alloy film in supercritical water environment

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

本文通过磁控溅射技术制备了Al0.2CoCrFeNi高熵合金薄膜, 研究了其组织结构并与Al0.2CoCrFeNi高熵合金块体材料以及G115合金的腐蚀性能进行对比。结果表明, Al0.2CoCrFeNi高熵合金薄膜为纳米晶结构, 薄膜内含单一的FCC相。Al0.2CoCrFeNi高熵合金薄膜和块体材料的电化学腐蚀能力均高于G115合金。薄膜在超临界环境 (650 °C, 25 MPa) 下腐蚀12 h后的氧化物由外层的NiO和内层的NiFe2O4组成。NiFe2O4连续致密, 能够有阻止氧扩散, 提高合金抗氧化腐蚀性能。

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

References

  1. Dong Z, Li M, Behnamian Y, Luo JL, Chen W, Amirkhiz BS, Liu P, Pang X, Li J, Zheng W, Guzonas D, Xia C. Effects of Si, Mn on the corrosion behavior of ferritic–martensitic steels in supercritical water (SCW) environments. Corros Sci. 2020;166:108432.

    Article  CAS  Google Scholar 

  2. Du DH, Chen K, Zhang LF, Shen Z. Microstructural investigation of the nodular corrosion of 304NG stainless steel in supercritical water. Corros Sci. 2020;170:108652.

    Article  CAS  Google Scholar 

  3. Xu S, Long F, Persaud SY, Guo N, Yao ZW, Daymond MR, Gao WH, Zhang LF, Zhou ZJ. Oxidation behavior of 9Cr-4.5Al ODS steel in 600 °C supercritical water and the effect of pre-oxidation. Corros Sci. 2020;165:108380.

    Article  CAS  Google Scholar 

  4. Chen JW, Wang QT, Xu ZY. E JJ, Leng EW, Zhang F, Liao GL, Process in supercritical water gasification of coal: a review of fundamentals, mechanisms, catalysts and element transformation. Energ Convers Manage. 2021;237:114122.

    Article  CAS  Google Scholar 

  5. Wei N, Xu D, Hao B, Guo S, Guo Y, Wang S. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Res. 2021;190:116634.

    Article  CAS  Google Scholar 

  6. Zhang J, Li BW, Li YH, Lu JL, Wang K, Zhang HM. Effect of sulfide on corrosion behavior of stainless steel 316SS and Hastelloy C276 in sub/supercritical water. Int J Hydrog Energy. 2021. https://doi.org/10.1016/j.ijhydene.2021.04.031.

    Article  Google Scholar 

  7. Guo SW, Xu DH, Li YH, Guo Y, Wang SZ, Macdonald DD. Corrosion characteristics and mechanisms of typical Ni-based corrosion-resistant alloys in sub- and supercritical water. J Supercrit Fluid. 2021;170:105138.

    Article  CAS  Google Scholar 

  8. Guo SW, Xu DH, Jiang GY, Jing ZF, Wang SZ, Lv H. High-temperature corrosion of Fe-Ni-based alloy HR6W, Ni-based alloys Haynes 282 and Inconel 740 in supercritical water at 450 °C and 25 MPa. J Alloys Compd. 2021;878:160350.

    Article  CAS  Google Scholar 

  9. Zhou XH, Niu TT, Xin YF, Li YL, Yang D. Experimental and numerical investigation on heat transfer in the vertical upward flow water wall of a 660 MW ultra-supercritical CFB boiler. Appl Therm Eng. 2021;188:116664.

    Article  Google Scholar 

  10. Li YY, Wang ZZ, Guo XP, Zhang GA. Galvanic corrosion between N80 carbon steel and 13Cr stainless steel under supercritical CO2 conditions. Corros Sci. 2019;147:260.

    Article  CAS  Google Scholar 

  11. Yang JQ, Wang SZ, Li YH, Xu DH. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment. Corros Sci. 2020;167:108493.

    Article  CAS  Google Scholar 

  12. Yang JQ, Wang SZ, Wang JH, Tang XY. Effect of high flow velocity on corrosion behavior of Ni based and Ni-Fe based alloys in supercritical water oxidation environment. J Supercrit Fluid. 2021;170:105126.

    Article  CAS  Google Scholar 

  13. Jiang JL, Zhou T, Shao W, Zhou CG. Interdiffusion behavior and lifetime prediction of Co-Al coating on Ni-based superalloy. J Alloys Compd. 2019;786:920.

    Article  CAS  Google Scholar 

  14. Meng XX, Yuwen P, Shao W, Qu WT, Zhou CG. Cyclic oxidation behaviour of Co/Si co-doped β-NiAl coating on nickel based superalloys. Corros Sci. 2018;133:112.

    Article  CAS  Google Scholar 

  15. Liu XT, Lei WB, Li J, Ma Y. Wang Wi, Zhang BH, Liu CS, Cui JZ, Laser cladding of high-entropy alloy on H13 steel. Rare Met. 2014;33(6):727.

    Article  CAS  Google Scholar 

  16. Liu SB, Li W, Fu LB, Wang TG, Jiang SM, Gong J, Sun C. Oxidation behaviour of NiCoCrAlYHfZr coating on a fourth generation single crystal superalloy. Corros Sci. 2021;187:109522.

    Article  CAS  Google Scholar 

  17. Wu PF, Gan KF, Yan DS, Fu ZH, Li ZM. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corros Sci. 2021;183:109341.

    Article  CAS  Google Scholar 

  18. Kim YK, Joo YA, Kim HS, Lee KA. High temperature oxidation behavior of Cr-Mn-Fe-Co-Ni high entropy alloy. Intermetallics. 2018;98:45.

    Article  CAS  Google Scholar 

  19. Qin YC, Wang FQ, Wang XM, Wang MW, Zhang WL, An WK, Wang XP, Ren YL, Zheng X, Lv DC, Ahmad A. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 2021. https://doi.org/10.1007/s12598-021-01727-y.

    Article  Google Scholar 

  20. Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2019;38(12):1153.

    Article  CAS  Google Scholar 

  21. Xian X, Zhong ZH, Lin LJ, Zhu ZX, Chen C, Wu YC. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1161-4.

    Article  Google Scholar 

  22. Zhou ZY, Wang L, Zhao XH, Wu JL, Zhang F, Pi JH. Effects of W addition on the corrosion behaviors of FeCoNiCrMn high entropy alloy composites in the 3.5 wt.% NaCl solution. Surf Interf. 2021;23:100956.

    Article  CAS  Google Scholar 

  23. Mukarram M, Mujahid M, Yaqoob K. Design and development of CoCrFeNiTa eutectic high entropy alloys. J Mater Res Technol. 2021;10:1243.

    Article  CAS  Google Scholar 

  24. Ma MY, Han AH, Zhang ZJ, Lian Y, Zhao C, Zhang J. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating. Corros Sci. 2021;185:109417.

    Article  CAS  Google Scholar 

  25. Lu J, Li L, Chen Y, Liu XZ, Zhao XF, Guo FW, Xiao P. Y-Hf co-doped AlCoCrFeNi high-entropy alloy coating with superior oxidation and spallation resistance at 1100 °C. Corros Sci. 2021;182:109267.

    Article  CAS  Google Scholar 

  26. Huang YM, Wang ZY, Xu ZZ, Zang XM, Chen XG. Microstructure and properties of TiNbZrMo high entropy alloy coating. Mater Lett. 2021;285(3):129004.

    Article  CAS  Google Scholar 

  27. Huang SR, Wu H, Zhu HG, Xie ZH. Effect of niobium addition upon microstructure and tensile properties of CrMnFeCoNix high entropy alloys. Mater Sci Eng A. 2021;809(102):140959.

    Article  CAS  Google Scholar 

  28. Wang ML, Lu YP, Zhang GJ, Cui HZ, Xu DF, Wei N, Li TJ. A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding. Vac. 2020;184:109905.

    Article  Google Scholar 

  29. Wang ML, Cui HZ, Zhao Y, Wang CM, Wei N, Gao XH, Song Q. Enhanced strength and ductility in a spark plasma sintered CoCrCu0.5NiAl0.5 high-entropy alloy via a double-step ball milling approach for processing powders. Mater Sci Eng A. 2019;762:138071.

    Article  CAS  Google Scholar 

  30. Lu YP, Gao XZ, Jiang L, Chen ZN, Wang TM, Jie JC, Kang HJ, Zhang YB, Guo S, Ruan HH, Zhao YH, Cao ZQ, Li TJ. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143.

    Article  CAS  Google Scholar 

  31. Lu YP, Dong Y, Jiang H, Wang ZJ, Cao ZQ, Guo S, Wang TM, Li TJ, Liaw PK. Promising properties and future trend of eutectic high entropy alloys. Scr Mater. 2020;187:202.

    Article  CAS  Google Scholar 

  32. Wang ML, Zhang GJ, Cui HZ, Lu YP, Zhao Y, Wei N, Li TJ. Effect of plasma remelting on microstructure and properties of a CoCrCuNiAl0.5 high-entropy alloy prepared by spark plasma sintering. J Mater Sci. 2021;56(9):5878.

    Article  CAS  Google Scholar 

  33. Lu J, Li L, Zhang H, Chen Y, Luo LR, Zhao XF, Guo FW, Xiao P. Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900–1100 °C. Corros Sci. 2021;181:109257.

    Article  CAS  Google Scholar 

  34. Gawel R, Rogal Ł, Dąbek J, Wójcik-Bania M, Przybylski K. High temperature oxidation behaviour of non-equimolar AlCoCrFeNi high entropy alloys. Vac. 2021;184:109969.

    Article  CAS  Google Scholar 

  35. Nascimento CB, Donatus U, Ríos CT, Antunes RA. Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution. J Mater Res Technol. 2020;9(6):13879.

    Article  CAS  Google Scholar 

  36. Kumar N, Fusco M, Komarasamy M, Mishra RS, Bourham M, Murty KL. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy. J Nucl Mater. 2017;495:154.

    Article  CAS  Google Scholar 

  37. Zhang Y, Wen C, Wang CX, Antonov S, Xue DZ, Bai Y, Su YJ. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 2020;185:528.

    Article  CAS  Google Scholar 

  38. Liu Z, Wang X, Dong C. Effect of boron on G115 martensitic heat resistant steel during aging at 650 °C. Mater Sci Eng A. 2020;787(2):139529.

    Article  CAS  Google Scholar 

  39. Xu ZL, Zhang H, Du XJ, He YZ, Luo H, Song GS, Mao L, Zhou TW, Wang LL. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing. Corros Sci. 2020;177:108954.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2016YFB0600103 and 2016YFB0600102). Thanks to the State Key Laboratory of Multiphase Flow at Xi'an Jiaotong University for providing supercritical corrosion equipment and assistance for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-Hong Zhu or Qing-He Yu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, BH., Qiu, HC., Jiang, W. et al. Oxidation behavior of Al0.2CoCrFeNi high-entropy alloy film in supercritical water environment. Rare Met. 41, 1217–1222 (2022). https://doi.org/10.1007/s12598-021-01859-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01859-1

Navigation