Skip to main content
Log in

Synergistically enhanced thermoelectric properties of Bi2S3 bulk materials via Cu interstitial doping and BiCl3 alloying

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bi2S3 is composed of inexpensive and environmental friendliness elements, which has received extensive interests and been investigated as a promising mid-temperature thermoelectric material for years. Even pure Bi2S3 possesses a high Seebeck coefficient and low thermal conductivity, its low electrical conductivity leads to a low figure of merit (ZT) value. In this work, Bi2S3 fabricated by solid-state melting combined with spark plasma sintering can significantly enhance the thermoelectric performance via introducing small amounts of Cu and BiCl3. Cu interstitial doping and Cl substitution on S site result in a large increase in electrical conductivity. Additionally, the enhanced phonon scattering is derived from the point defects caused by element doping, the grain boundaries, and the small amount of secondary phase, which leads to the low thermal conductivity. Finally, a high ZT value of 0.7 is obtained at 773 K and reaches a large average ZT of 0.36 in the temperature range from room temperature (RT) to 773 K for the Cu-interstitial-doped and BiCl3-alloyed (Cu0.01Bi2S3 + 0.175 mol% BiCl3) sample. Furthermore, the mechanical properties of the Cu0.01Bi2S3 + 0.175 mol% BiCl3 sample are lower than those of other Bi2S3 samples, which stem from the weak chemical bonding strength.

Graphic abstract

摘要

硫化铋是一种价格低廉, 环境友好的材料, 近年来作为一种有前景的中温热电材料受到了广泛的关注和研究。尽管纯的硫化铋具有高的塞贝克系数和低的导热系数, 但其低的电导率导致了其低的ZT值。在本工作中, 利用少量的Cu掺杂和BiCl3合金化, 通过固态熔融结合放电等离子体烧结制备的硫化铋可以显著提高其热电性能. Cu的间隙掺杂和Cl在S位上的取代导致了电导率的大幅度提高。此外, 元素掺杂、晶界和少量二次相导致的点状缺陷导致声子散射增强, 从而导致热导率低。最后, 在773 K时获得了较高的ZT值为0.7, 在RT ~ 773 K的温度范围内, Cu掺杂复合BiCl3合金(Cu0.01Bi2S3 + 0.175 mol% BiCl3)样品的ZT平均值为0.36。此外, Cu0.01Bi2S3 + 0.175 mol% BiCl3样品的力学性能低于其他硫化铋样品, 这是由于化学结合强度较弱所致。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. DiSalvo FJ. Thermoelectric cooling and power generation. Science. 1999;285(5428):703.

    Article  CAS  Google Scholar 

  2. Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling, Energ. Convers Manage. 2005;46(9–10):1631.

    Article  Google Scholar 

  3. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.

    Article  CAS  Google Scholar 

  4. Chen QF, Wang XX, Wu ZS, Liu CY, Lei M. Recent advances in SnSe-based thermoelectric materials. Chin J Rare Met. 2020;44(12):1316.

    Google Scholar 

  5. Kurosaki K, Kosuga A, Muta H, Uno M, Yamanaka S. Ag9TlTe5: a high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl Phys Lett. 2005;87(6):061919.

    Article  Google Scholar 

  6. Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater. 2012;24(46):6125.

    Article  CAS  Google Scholar 

  7. Rahnamaye Aliabad HA, Nodehi Z, Maleki B, Abareshi A. Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion. Rare Met. 2019;38(11):1015.

    Article  CAS  Google Scholar 

  8. Tan G, Hao S, Hanus RC, Zhang X, Anand S, Bailey TP, Rettie AJE, Su X, Uher C, Dravid VP, Snyder GJ, Wolverton C, Kanatzidis MG. High thermoelectric performance in SnTe–AgSbTe2 alloys from lattice softening, giant phonon–vacancy scattering, and valence band convergence. ACS Energy Lett. 2018;3(3):705.

    Article  CAS  Google Scholar 

  9. Guo J, Lou Q, Qiu Y, Wang ZY, Ge ZH, Feng J, He J. Remarkably enhanced thermoelectric properties of Bi2S3 nanocomposites via modulation doping and grain boundary engineering. Appl Surf Sci. 2020;520:146341.

    Article  CAS  Google Scholar 

  10. Pei YL, Wu H, Wu D, Zheng F, He J. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc. 2014;136(39):13902.

    Article  CAS  Google Scholar 

  11. Wang H, Hu H, Man N, Xiong C, Xiao Y, Tan X, Liu G, Jiang J. Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement. Mater Today Phys. 2021;16:100298.

    Article  CAS  Google Scholar 

  12. Zhou YX, Zhou Y, Wu P, Song P, Chong XY, Feng J. Thermal properties of Y1−xMgxTaO4−x/2 ceramics via anion sublattice adjustment. Rare Met. 2019;39(5):545.

    Article  Google Scholar 

  13. Shi X, Wu A, Liu W, Moshwan R, Wang Y, Chen ZG, Zou J. Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano. 2018;12(11):11417.

    Article  CAS  Google Scholar 

  14. Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.

    Article  CAS  Google Scholar 

  15. Guo J, Zhang YX, Wang ZY, Zheng F, Ge ZH, Fu J, Feng J. High thermoelectric properties realized in earth-abundant Bi2S3 bulk via carrier modulation and multi-nano-precipitates synergy. Nano Energy. 2020;78:105227.

    Article  CAS  Google Scholar 

  16. Luo ZZ, Cai S, Hao S, Bailey TP, Hu X, Hanus R, Ma R, Tan G, Chica DG, Snyder GJ, Uher C, Wolverton C, Dravid VP, Yan Q, Kanatzidis MG. Ultralow thermal conductivity and high-temperature thermoelectric performance in n-Type K2.5Bi8.5Se14. Chem Mater. 2019;31(15):5943.

    Article  CAS  Google Scholar 

  17. Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G, Wu H, Chen Y, Zheng L, Gong S, Zhu T, Zhao X, Huang L, He J, Kanatzidis MG, Zhao LD. Multiple converged conduction bands in K2Bi8Se13: a promising thermoelectric material with extremely low thermal conductivity. J Am Chem Soc. 2016;138(50):16364.

    Article  CAS  Google Scholar 

  18. Zhu B, Liu X, Wang Q, Qiu Y, Shu Z, Guo Z, Tong Y, Cui J, Gu M, He J. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energ Environ Sci. 2020;13(7):2106.

    Article  CAS  Google Scholar 

  19. Zhang Q, Ai X, Wang L, Chang Y, Luo W, Jiang W, Chen L. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater. 2015;25(6):966.

    Article  CAS  Google Scholar 

  20. Zhu YK, Guo J, Chen L, Gu SW, Zhang YX, Shan Q, Feng J, Ge ZH. Simultaneous enhancement of thermoelectric performance and mechanical properties in Bi2Te3, via Ru compositing. Chem Eng J. 2021;407:126407.

    Article  CAS  Google Scholar 

  21. Jiang B, Liu X, Wang Q, Cui J, Jia B, Zhu Y, Feng J, Qiu Y, Gu M, Ge Z, He J. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energ Environ Sci. 2020;13(2):579.

    Article  CAS  Google Scholar 

  22. Qian X, Wu H, Wang D, Zhang Y, Wang J, Wang G, Zheng L, Pennycook SJ, Zhao LD. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe, Energ. Environ Sci. 2019;12(6):1969.

    CAS  Google Scholar 

  23. Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek A, Puchegger S, Soprunyuk V, Schranz W, Bauer E, Müller H, Zehetbauer M, Rogl P. Mechanical properties of half-Heusler alloys. Acta Mater. 2016;107:178.

    Article  CAS  Google Scholar 

  24. Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G, Ren Z. Thermoelectric properties of n-type ZrNiPb-based half-heuslers. Chem Mater. 2017;29(2):867.

    Article  CAS  Google Scholar 

  25. Pei J, Zhang LJ, Zhang BP, Shang PP, Liu YC. Enhancing the thermoelectric performance of CexBi2S3 by optimizing the carrier concentration combined with band engineering. J Mater Chem C. 2017;5(47):12492.

    Article  CAS  Google Scholar 

  26. Guo J, Yang J, Ge ZH, Jiang B, Qiu Y, Zhu YK, Wang X, Rong J, Yu X, Feng J, He J. Realizing high thermoelectric performance in earth-abundant Bi2S3 bulk materials via halogen acid modulation. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202102838.

    Article  Google Scholar 

  27. Guo J, Ge ZH, Qian F, Lu DH, Feng J. Achieving high thermoelectric properties of Bi2S3 via InCl3 doping. J Mater Sci. 2019;55(1):263.

    Article  Google Scholar 

  28. Biswas K, Zhao LD, Kanatzidis MG. Tellurium-free thermoelectric: the anisotropic n-type semiconductor Bi2S3. Adv Energy Mater. 2012;2(6):634.

    Article  CAS  Google Scholar 

  29. Liu Z, Pei Y, Geng H, Zhou J, Meng X, Cai W, Liu W, Sui J. Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy. 2015;13:554.

    Article  CAS  Google Scholar 

  30. Ge ZH, Zhang BP, Liu Y, Li JF. Nanostructured Bi2-xCuxS3 bulk materials with enhanced thermoelectric performance. Phys Chem Chem Phys. 2012;14(13):4475.

    Article  CAS  Google Scholar 

  31. Li L, Liu Y, Dai JY, Zhu HX, Hong AJ, Zhou XH, Ren ZF, Liu JM. Thermoelectric property studies on CuxBi2SeS2 with nano-scale precipitates Bi2S3. Nano Energy. 2015;12:447.

    Article  CAS  Google Scholar 

  32. Liu WS, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater. 2011;1(4):577.

    Article  CAS  Google Scholar 

  33. Yang J, Yu L, Wang T, Yan J, Liu G, Shi Z, Qiao G. Thermoelectric properties of n-type CuxBi2S3 materials fabricated by plasma activated sintering. J Alloy Compd. 2019;780:35.

    Article  CAS  Google Scholar 

  34. Kim HS, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of loren number with Seebeck coefficient measurement. APL Mater. 2015;3(4):041506.

    Article  Google Scholar 

  35. Shi X, Wu A, Feng T, Zheng K, Liu W, Sun Q, Hong M, Pantelides ST, Chen ZG, Zou J. High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv Energy Mater. 2019;9(11):1803242.

    Article  Google Scholar 

  36. Zhu YK, Wu P, Guo J, Zhou Y, Chong X, Ge ZH, Feng J. Achieving a fine balance in mechanical properties and thermoelectric performance in commercial Bi2Te3 materials. Ceram Int. 2020;46(10):14994.

    Article  CAS  Google Scholar 

  37. Li M, Islam SMKN, Yahyaoglu M, Pan D, Shi X, Chen L, Aydemir U, Wang X. Ultrahigh figure-of-merit of Cu2Se incorporated with carbon coated boron nanoparticles. InfoMat. 2019;1(1):108.

    Article  CAS  Google Scholar 

  38. Koc H, Ozisik H, Deligoz E, Mamedov AM, Ozbay E. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. J Mol Model. 2014;20(4):2180.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11764025), the Academician (Expert) Workstation of Yunnan Province Program (No. 202005AF150010), and Yunnan Provincial Natural Science Key Fund (No. 202101AS070015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hua Ge.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wang, ZY., Zhu, YK. et al. Synergistically enhanced thermoelectric properties of Bi2S3 bulk materials via Cu interstitial doping and BiCl3 alloying. Rare Met. 41, 931–941 (2022). https://doi.org/10.1007/s12598-021-01848-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01848-4

Keywords

Navigation