Skip to main content
Log in

Thermoelectric properties of (GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]x alloys

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The (GeTe)x(AgSbTe2)100-x alloys (TAGS-x) have been demonstrated as a promising p-type candidate for thermoelectric applications, attracting numerous attentions on the advancements of thermoelectric performance. Manipulation of carrier concentration for optimizing thermoelectric performance in TAGS can be achieved by varying the ratio of Ag to Sb, and the Ag/Sb ratio of ~ 2/3 has been proven as the optimal composition. Therefore, this work focuses on the systematic investigation on thermoelectric properties of (GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]x alloys. The crystal structure for the alloys transfers from rhombohedral to cubic at room temperature as x ≥ 0.2. The evolution of band parameter is estimated using a single parabolic band (SPB) model with acoustic phonon scattering. The density of states effective mass increases with x increasing, which leads to an enhancement of Seebeck coefficient along with a reduction in Hall mobility due to the additional carrier scattering by point defects. Meanwhile, the lattice thermal conductivity of lower than ~ 0.7 W·m−1·K−1 in the entire temperature range and the lowest one of only 0.45 W·m−1·K−1 is achieved due to additional phonon scattering by point defects. As a result, a peak thermoelectric figure of merit (zT) of ~ 1.80 and an average one of ~ 1.37 in 300–800 K are realized in nonstoichiometric TAGS alloys here.

Graphic abstract

摘要

(GeTe)x(AgSbTe2)100-x合金 (TAGS-x) 是一种有前途的p型热电材料, 在热电性能提升方面引起了诸多关注。通过改变Ag与Sb的比例来调控载流子浓度可以优化TAGS的热电性能, 其中Ag/Sb的比例约为2/3被证实为最佳的组成。因此, 本工作对(GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]x合金的热电性能进行了系统研究。结果表明, 当x ≥ 0.2时, 样品的晶体结构在室温下从菱方结构转变为立方结构。利用基于声学声子散射的单抛物带 (SPB) 模型估计了材料的能带参数。态密度有效质量随着x的增加而增加, 从而导致了塞贝克系数的增加, 同时由于点缺陷造成的额外载流子散射导致霍尔迁移率降低。此外, 由于点缺陷引起的额外声子散射, 晶格热导率在整个温度范围内低于~0.7 W·m−1·K−1, 最低值仅为0.45 W·m−1·K−1。本工作在非化学计量的TAGS合金中实现的最高热电优值 (zT) 为~1.8, 在300-800 K 范围内的平均zT为~1.37。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

    Article  CAS  Google Scholar 

  2. Heremans JP, Wiendlocha B, Chamoire AM. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci. 2012;5(2):5510.

    Article  CAS  Google Scholar 

  3. Lin S, Li W, Chen Z, Shen J, Ge B, Pei Y. Tellurium as a high-performance elemental thermoelectric. Nat Commun. 2016;7:10287.

    Article  CAS  Google Scholar 

  4. Zhang MN, Wu X, Riaud A, Wang XL, Xie F, Liu WJ, Mei Y, Zhang DW, Ding SJ. Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light Sci Appl. 2020;9(1):162.

    Article  CAS  Google Scholar 

  5. Tang J, Gao B, Lin S, Wang X, Zhang X, Xiong F, Li W, Chen Y, Pei Y. Manipulation of solubility and interstitial defects for improving thermoelectric SnTe alloys. ACS Energy Lett. 1969;2018:3.

    Google Scholar 

  6. Liu H, Zhang X, Li J, Bu Z, Meng X, Ang R, Li W. Band and phonon engineering for thermoelectric enhancements of rhombohedral GeTe. ACS Appl Mater Interfaces. 2019;11(34):30756.

    Article  CAS  Google Scholar 

  7. Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting IT, Faghaninia A, Chen Y, Jain A, Chen L, Snyder GJ, Pei Y. Low-symmetry rhombohedral GeTe thermoelectrics. Joule. 2018;2(5):976.

    Article  CAS  Google Scholar 

  8. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.

    Article  CAS  Google Scholar 

  9. Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys Rev Lett. 2012;108(16):166601.

    Article  Google Scholar 

  10. Shi X, Zhang X, Ganose A, Park J, Sun C, Chen Z, Lin S, Li W, Jain A, Pei Y. Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-xBix thermoelectrics. Mater Today Phys. 2021;18:100362.

    Article  CAS  Google Scholar 

  11. Wang X, Li W, Zhou B, Sun C, Zheng L, Tang J, Shi X, Pei Y. Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. Mater Today Phys. 2019;8:123.

    Article  CAS  Google Scholar 

  12. Xie H, Wang H, Pei Y, Fu C, Liu X, Snyder GJ, Zhao X, Zhu T. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Adv Func Mater. 2013;23(41):5123.

    Article  CAS  Google Scholar 

  13. Tang Y, Gibbs ZM, Agapito LA, Li G, Kim HS, Nardelli MB, Curtarolo S, Snyder GJ. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater. 2015;14(12):1223.

    Article  CAS  Google Scholar 

  14. He R, Zhu H, Sun J, Mao J, Reith H, Chen S, Schierning G, Nielsch K, Ren Z. Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M= Hf, Zr). Mater Today Phys. 2017;1:24.

    Article  Google Scholar 

  15. Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, Ge B. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Adv Electron Mater. 2016;2(6):1600019.

    Article  Google Scholar 

  16. Hu L, Zhu T, Liu X, Zhao X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Func Mater. 2014;24(33):5211.

    Article  CAS  Google Scholar 

  17. Yu F, Meng X, Cheng J, Liu JP, Yao YL, Li J. Novel n-type thermoelectric material of ZnIn2Se4. J Alloy Compd. 2019;797:940.

    Article  CAS  Google Scholar 

  18. Gazka K, Xie W, Populoh S, Aguirre MH, Weidenkaff A. Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Metals. 2020;39(6):659.

    Article  Google Scholar 

  19. Wang RF, Li S, Xue WH, Chen C, Wang YM, Liu XJ, Zhang Q. Enhanced thermoelectric performance of n-type TiCoSb half-Heusler by Ta doping and Hf alloying. Rare Met. 2020;40(1):40.

    Article  Google Scholar 

  20. Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder GJ, Pei Y. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat Commun. 2017;8:13828.

    Article  CAS  Google Scholar 

  21. Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109.

    Article  CAS  Google Scholar 

  22. Vineis C, Shakouri A, Majumdar A, Kanatzidis M. Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater. 2010;22(36):3970.

    Article  CAS  Google Scholar 

  23. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.

    Article  CAS  Google Scholar 

  24. Jiang W, Ma L, Xu X. One-dimensional microstructure-assisted intradermal and intracellular delivery. Bio-Des Manuf. 2019;2(1):24.

    Article  Google Scholar 

  25. Han Q, Chen Y, Song W, Zhang M, Wang S, Ren P, Hao L, Wang A, Bai S, Yin J. Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor. Bio-Des Manuf. 2019;2(4):269.

    Article  CAS  Google Scholar 

  26. Snyder G, Christensen M, Nishibori E, Caillat T, Iversen B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat Mater. 2004;3(7):458.

    Article  CAS  Google Scholar 

  27. Liu HX, Li W, Shen HW, Zhang XY, Lin SQ, Pei YZ. Evaluation of thermoelectric properties of Ag0.366Sb0.558Te. Annalen Der Physik. 2020;532(11):1900561.

    Article  CAS  Google Scholar 

  28. Zhang X, Chen Z, Lin S, Zhou B, Gao B, Pei Y. Promising thermoelectric Ag5−δTe3 with intrinsic low lattice thermal conductivity. ACS Energy Lett. 2017;2(10):2470.

    Article  CAS  Google Scholar 

  29. Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ. Copper ion liquid-like thermoelectrics. Nat Mater. 2012;11(5):422.

    Article  Google Scholar 

  30. Li W, Lin S, Ge B, Yang J, Zhang W, Pei Y. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Adv Sci. 2016;3(11):1600196.

    Article  Google Scholar 

  31. Zhang X, Bu Z, Shi X, Chen Z, Lin S, Shan B, Wood M, Snyder AH, Chen L, Snyder GJ, Pei Y. Electronic quality factor for thermoelectrics. Sci Adv. 2020;6(46):eabc0726.

    Article  CAS  Google Scholar 

  32. Rosi FD, Dismukes JP, Hockings EF. Semiconductor materials for thermoelectric power generation up to 700 C. Electr Eng. 2013;79(6):450.

    Article  Google Scholar 

  33. Skrabek EA, Trimmer DS. Properties of the general TAGS system. In: Rowe DM, editor. CRC handbook of thermoelectrics. Boca Raton, FL: CRC Press; 1995. 1.

    Google Scholar 

  34. Levin EM, Bud’ko SL, Schmidt-Rohr K. Enhancement of thermopower of TAGS-85 high-performance thermoelectric material by doping with the rare earth Dy. Adv Func Mater. 2012;22(13):2766.

    Article  CAS  Google Scholar 

  35. Levin EM, Cook BA, Harringa JL, Bud’ko SL, Venkatasubramanian R, Schmidt-Rohr K. Analysis of Ce- and Yb-doped TAGS-85 materials with enhanced thermoelectric figure of merit. Adv Funct Mater. 2011;21(3):441.

    Article  CAS  Google Scholar 

  36. Rodenkirchen C, Cagnoni M, Jakobs S, Cheng YD, Keutgen J, Yu Y, Wuttig M, Cojocaru-Miredin O. Employing interfaces with metavalently bonded materials for phonon scattering and control of the thermal conductivity in TAGS-x thermoelectric materials. Adv Funct Mater. 2020;30(17):1910039.

    Article  CAS  Google Scholar 

  37. Zhu T, Gao H, Chen Y, Zhao X. Ioffe-Regel limit and lattice thermal conductivity reduction of high performance (AgSbTe2)15(GeTe)85 thermoelectric materials. J Mater Chem A. 2014;2(9):3251.

    Article  CAS  Google Scholar 

  38. Li J, Chen ZW, Zhang XY, Sun YX, Yang J, Pei YZ. Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. Npg Asia Mater. 2017;9(3):e353.

    Article  CAS  Google Scholar 

  39. Yang SH, Zhu TJ, Yu C, Shen JJ, Yin ZZ, Zhao XB. Improved thermoelectric properties of (GeTe)90(AgySb2−yTe3−y)10 by tuning the Ag-to-Sb ratio. J Electron Mater. 2011;40(5):1244.

    Article  CAS  Google Scholar 

  40. Christakudis GC, Plachkova SK, Shelimova LE, Avilov ES. Thermoelectric figure of merit of some compositions in the system (GeTe)1–x[(Ag2Te)1-y(Sb2Te3)y]x. Phys Status Sol (a). 1991;128(2):465.

    Article  CAS  Google Scholar 

  41. Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y, Pei Y. Band and scattering tuning for high performance thermoelectric Sn1−xMnxTe alloys. J Materiomics. 2015;1(4):307.

    Article  Google Scholar 

  42. Li J, Zhang X, Wang X, Bu Z, Zheng L, Zhou B, Xiong F, Chen Y, Pei Y. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. J Am Chem Soc. 2018;140(47):16190.

    Article  CAS  Google Scholar 

  43. Shen J, Chen Z, Lin S, Zheng L, Li W, Pei Y. Single parabolic band behavior of thermoelectric p-type CuGaTe2. J Mater Chem C. 2016;4(1):209.

    Article  CAS  Google Scholar 

  44. Chen Y, Jaworski CM, Gao YB, Wang H, Zhu TJ, Snyder GJ, Heremans JP, Zhao XB. Transport properties and valence band feature of high-performance (GeTe)85(AgSbTe2)15 thermoelectric materials. New J Phys. 2014;16(1):013057.

    Article  Google Scholar 

  45. Liu Z, Sun J, Mao J, Zhu H, Ren W, Zhou J, Wang Z, Singh DJ, Sui J, Chu CW, Ren Z. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc Natl Acad Sci USA. 2018;115(21):5332.

    Article  CAS  Google Scholar 

  46. Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis MG, Tang X. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J Am Chem Soc. 2018;140(7):2673.

    Article  CAS  Google Scholar 

  47. Cahill DG, Pohl RO. Lattice vibrations and heat transport in crystals and glasses. Annu Rev Phys Chem. 1988;39:93.

    Article  CAS  Google Scholar 

  48. Chen Z, Zhang X, Lin S, Chen L, Pei Y. Rationalizing phonon dispersion for lattice thermal conductivity of solids. Natl Sci Rev. 2018;5(6):888.

    Article  CAS  Google Scholar 

  49. Snyder GJ, Agne MT, Gurunathan R. Thermal conductivity of complex materials. Natl Sci Rev. 2018;6(3):380.

    Article  Google Scholar 

  50. Bu Z, Chen Z, Zhang X, Lin S, Mao J, Li W, Chen Y, Pei Y. Near-room-temperature rhombohedral Ge1-xPbxTe thermoelectrics. Mater Today Phys. 2020;15:100260.

    Article  Google Scholar 

  51. Snyder GJ. Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl Phys Lett. 2004;84(13):2436.

    Article  CAS  Google Scholar 

  52. Davidow J, Gelbstein Y. A comparison between the mechanical and thermoelectric properties of three highly efficient p-type GeTe-rich compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-doped Ge0.87Pb0.13Te. J Electron Mater. 2012;42(7):1542.

    Article  Google Scholar 

  53. Yang SH, Zhu TJ, Sun T, He J, Zhang SN, Zhao XB. Nanostructures in high-performance (GeTe)x(AgSbTe2)100–x thermoelectric materials. Nanotechnology. 2008;19(24):245707.

    Article  CAS  Google Scholar 

  54. Plachkova SK, Avramova IA. Materials for thermoelectric application based on the system GeTe–AgBiTe2. Phys Status Sol (a). 2001;184(1):195.

    Article  CAS  Google Scholar 

  55. Lyu WY, Hong M, Liu WD, Li M, Sun Q, Xu SD, Zou J, Chen ZG. Rare-earth Nd inducing record-high thermoelectric performance of (GeTe)85(AgSbTe2)15. Energy Mater Adv. 2021;2021:1.

    Article  Google Scholar 

  56. Li J, Li W, Bu Z, Wang X, Gao B, Xiong F, Chen Y, Pei Y. Thermoelectric transport properties of CdxBiyGe1-x-yTe Alloys. ACS Appl Mater Interfaces. 2018;10(46):39904.

    Article  CAS  Google Scholar 

  57. Suwardi A, Cao J, Hu L, Wei F, Wu J, Zhao Y, Lim SH, Yang L, Tan XY, Chien SW, Yin Y, Zhou WX, Mun Nancy WL, Wang X, Lim SH, Ni X, Li D, Yan Q, Zheng Y, Zhang G, Xu J. Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J Mater Chem A. 2020;8(36):18880.

    Article  CAS  Google Scholar 

  58. Li J, Zhang XY, Lin SQ, Chen ZW, Pei YZ. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem Mater. 2017;29(2):605.

    Article  CAS  Google Scholar 

  59. Hong M, Lyv W, Li M, Xu S, Sun Q, Zou J, Chen ZG. Rashba effect maximizes thermoelectric performance of GeTe derivatives. Joule. 2020;4(9):2030.

    Article  CAS  Google Scholar 

  60. Dong J, Sun FH, Tang H, Pei J, Zhuang HL, Hu HH, Zhang BP, Pan Y, Li JF. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ Sci. 2019;12(4):1396.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51861145305 and 52022068), the Fundamental Research Funds for Science and Technology Innovation Plan of Shanghai (No. 18JC1414600), Hefei National Laboratory for Physical Sciences at the Microscale (No. KF2020007) and Shanghai Natural Science Foundation (No. 19ZR1459900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Li or Yan-Zhong Pei.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HX., Zhang, XY., Bu, ZL. et al. Thermoelectric properties of (GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]x alloys. Rare Met. 41, 921–930 (2022). https://doi.org/10.1007/s12598-021-01847-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01847-5

Keywords

Navigation