Skip to main content
Log in

NiO nanoparticles-decorated ZnO hierarchical structures for isopropanol gas sensing

  • ORIGINAL ARTICLE
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, a three-dimensional (3D) hierarchical ZnO structure consisting of nanosheets modified with ultrafine NiO particles was synthesized via a facile two-step chemical precipitate method. Various techniques characterized the as-synthesized ZnO/NiO composites and pure ZnO. The p-NiO/n-ZnO junctions formed between adjacent ZnO and NiO nanoparticles, improving the gas sensing performance. The ZnO/NiO composite with the Ni:Zn atomic ratio of 7.42:100 exhibited the best isopropanol sensing properties. Compared to pure ZnO, it showed high selectivity and sensitivity (Ra/Rg = 221.3 toward 400 × \({10}^{-6}\) isopropanol), fast response rate (less than 10 s), short recovery time, and simultaneously low operating temperature. Also, the ZnO/NiO composite exhibited a wide sensing range (1 × \({10}^{-6}\)–1000 × \({10}^{-6}\)) to isopropanol and processed good long-term stability. The experimental results suggested the potential application in fabricating efficient isopropanol sensors using this ZnO/NiO composite. The enhanced isopropanol sensing mechanism is also discussed in charge transfer between heterojunctions, surface area, and surface defects.

Graphic abstract

摘要

通过简单的两步化学沉淀法合成了超微NiO颗粒修饰的ZnO三维纳米片分级结构。 使用多种方法表征了ZnO和ZnO/NiO复合材料。 ZnO和NiO纳米颗粒之间形成了p-NiO/n-ZnO结, 提高了气敏性能。 Ni:Zn原子比为7.42:100的ZnO/NiO复合材料表现出最佳的异丙醇传感性能。 与纯氧化锌相比, 其选择性好和灵敏度高 (Ra/Rg = 221.3), 响应速度快 (小于10 s), 恢复时间短, 操作温度低。 此外, ZnO/NiO复合材料检测范围宽 (1 × 10–6-1000 × 10–6), 长期稳定性好。 实验结果表明, ZnO/NiO复合材料可用于制备高效异丙醇传感器, 具有潜在的应用价值。 本文还在异质结间电荷转移、比表面积和表面缺陷等方面讨论了该材料对异丙醇的传感增强机理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang C, Cui X, Liu J, Zhou X, Cheng X, Sun P, Hu X, Li X, Zheng J, Lu G. Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. ACS Sens. 2016;1(2):131.

    CAS  Google Scholar 

  2. Li N, Fan Y, Shi Y, Xiang Q, Wang X, Xu J. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sens Actuator B Chem. 2019;294:106.

    CAS  Google Scholar 

  3. Wang T, Yu Q, Zhang S, Kou X, Sun P, Lu G. Rational design of 3D inverse opal heterogeneous composite microspheres as excellent visible-light-induced NO2 sensors at room temperature. Nanoscale. 2018;10(10):4841.

    CAS  Google Scholar 

  4. Dai J, Ogbeide O, Macadam N, Sun Q, Yu W, Li Y, Su BL, Hasan T, Huang X, Huang W. Printed gas sensors. Chem Soc Rev. 2020;49(6):1756.

    CAS  Google Scholar 

  5. Ab KR, Zhang W, Wang Y, Ou JZ, Wlodarski W, O’Mullane AP, Bryant G, Taylor M, Kalantar-zadeh K. Anodized nanoporous WO3 Schottky contact structures for hydrogen and ethanol sensing. J Mater Chem A. 2015;3(15):7994.

    Google Scholar 

  6. Malik R, Tomer VK, Mishra YK, Lin L. Functional gas sensing nanomaterials: a panoramic view. Appl Phys Rev. 2020;7(2):021301.

    CAS  Google Scholar 

  7. Bhati V S, Hojamberdiev M, Kumar M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review. Energy Rep. 2020;6:46.

  8. Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review. Materials. 2014;7(4):2833.

    Google Scholar 

  9. Liu J, Dai M, Wang T, Sun P, Liang X, Lu G, Shimanoe K, Yamazoe N. Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles heterostructure composite materials. ACS Appl Mat Interfaces. 2016;8(10):6669.

    CAS  Google Scholar 

  10. Chen XY, Wang XZ, Liu FJ, Zhang GS, Song XJ, Tian J, Cui HZ. Fabrication of porous Zn2TiO4-ZnO microtubes and analysis of their acetone gas sensing properties. Rare Met. 2021;40(6):1528.

    CAS  Google Scholar 

  11. Ma J, Fan H, Zhao N, Zhang W, Ren X, Wang C, Wen Y, Wang W. Synthesis of In2O3 hollow microspheres for chlorine gas sensing using yeast as bio-template. Ceram Int. 2019;455(7):9225.

    Google Scholar 

  12. Nagmani PD, Tyagi A, Jagadale TC, Prellier W, Aswal DK. Highly sensitive and selective H2S gas sensor based on TiO2 thin films. Appl Surf Sci. 2021. https://doi.org/10.1016/j.apsusc.2021.149281.

    Article  Google Scholar 

  13. Ab Kadir R, Zhang W, Wang Y, Ou JZ, Wlodarski W, O’Mullane AP, Bryant G, Taylor M, Kalantar-zadeh K. Anodized nanoporous WO3 Schottky contact structures for hydrogen and ethanol sensing. J Mater Chem A. 2015;3(15):7994.

    CAS  Google Scholar 

  14. Wang X, Wang T, Si G, Li Y, Zhang S, Deng X, Xu X. Oxygen vacancy defects engineering on Ce-doped α-Fe2O3 gas sensor for reducing gases. Sens Actuator B Chem. 2020. https://doi.org/10.1016/j.snb.2019.127165.

    Article  Google Scholar 

  15. Schneider K, Lubecka M, Czapla A. V2O5 thin films for gas sensor applications. Sens Actuator B Chem 2016;236970.

  16. Wang F, Li H, Yuan Z, Sun Y, Chang F, Deng H, Xie L, Li H. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol-gel method. RSC Adv. 2016;6(83):79343.

    CAS  Google Scholar 

  17. Liu W, Gu D, Zhang JW, Li XG, Rumyantseva MN, Gaskov AM. ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection. Rare Met. 2021;40(6):1632.

    CAS  Google Scholar 

  18. Bai S, Liu H, Sun J, Tian Y, Luo R, Li D, Chen A. Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification. RSC Adv. 2015;5(60):48619.

    CAS  Google Scholar 

  19. Liu H, Du X, Xing X, Wang G, Qiao SZ. Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. Chem Commun. 2012;48(6):865.

    CAS  Google Scholar 

  20. Liu F, Huang G, Wang X, Xie X, Xu G, Lu G, He X, Tian J, Cui H. High response and selectivity of single crystalline ZnO nanorods modified by In2O3 nanoparticles for n-butanol gas sensing. Sens Actuator B Chem. 2018;277:144.

    CAS  Google Scholar 

  21. Huang H-W, Liu J, He G, Peng Y, Wu M, Zheng WH, Chen LH, Li Y, Su BL. Tunable macro-mesoporous ZnO nanostructures for highly sensitive ethanol and acetone gas sensors. RSC Adv. 2015;5(123):101910.

    CAS  Google Scholar 

  22. Katoch A, Kim JH, Kim SS. TiO2/ZnO inner/outer double-layer hollow fibers for improved detection of reducing gases. ACS Appl Mat Interfaces. 2014;6(23):21494.

    CAS  Google Scholar 

  23. Zhang S, Li Y, Sun G, Zhang B, Wang Y, Cao J, Zhang Z. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl Surf Sci. 2019;497:143811.

    CAS  Google Scholar 

  24. Zeng QR, Feng JT, Lin XC, Zhao Y, Liu H, Wang SZ, Dong ZJ, Feng W. One-step facile synthesis of a NiO/ZnO biomorphic nanocomposite using a poplar tree leaf template to generate an enhanced gas sensing platform to detect n-butanol. J Alloys Compd. 2020;815:150550.

    CAS  Google Scholar 

  25. Hao P, Qu GM, Song P, Yang ZX, Wang Q. Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Met. 2021;40(6):1651.

    CAS  Google Scholar 

  26. Saito N, Haneda H, Watanabe K, Shimanoe K, Sakaguchi I. Highly sensitive isoprene gas sensor using Au-loaded pyramid-shaped ZnO particles. Sens Actuator B Chem. 2021;326:128999.

    CAS  Google Scholar 

  27. Wang S, Qiao G, Chen X, Wang X, Cui H. Synthesis of ZnO hollow microspheres and analysis of their gas sensing properties for n-butanol. Curr Comput Aided Drug Des. 2020;10(11):1010.

    CAS  Google Scholar 

  28. Liu JB, Hu JY, Liu C, Tan YM, Peng X, Zhang Y. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature. Rare Met. 2021;40(6):1536.

    CAS  Google Scholar 

  29. Song X, Li L, Chen X, Xu Q, Song B, Pan Z, Liu Y, Juan F, Xu F, Cao B. Enhanced triethylamine sensing performance of α-Fe2O3 nanoparticle/ZnO nanorod heterostructures. Sens Actuator B Chem. 2019;298:126917.

    CAS  Google Scholar 

  30. Zhang K, Qin S, Tang P, Feng Y, Li D. Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J Hazard Mater. 2020;391:122191.

    CAS  Google Scholar 

  31. Fu D, Zhu C, Zhang X, Li C, Chen Y. Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J Mater Chem A. 2016;4(4):1390.

    CAS  Google Scholar 

  32. Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl Mat Interfaces. 2010;2(10):2915.

    CAS  Google Scholar 

  33. Geng WC, Cao XR, Xu SL, Yang JH, Babar N, He ZJ, Zhang QY. Synthesis of hollow spherical nickel oxide and its gas-sensing properties. Rare Met. 2021;40(6):1622.

    CAS  Google Scholar 

  34. Li C, Feng C, Qu F, Liu J, Zhu L, Lin Y, Wang Y, Li F, Zhou J, Ruan S. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunction with different NiO content and its influence on trimethylamine sensing properties. Sens Actuator B Chem. 2015;207:90.

    CAS  Google Scholar 

  35. Liu C, Wang B, Liu T, Sun P, Gao Y, Liu F, Lu G. Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures. Sens Actuator B Chem. 2016;235:294.

    CAS  Google Scholar 

  36. Poloju M, Jayababu N, Manikandan E, Ramana Reddy MV. Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites. J Mater Chem C. 2017;5(10):2662.

    CAS  Google Scholar 

  37. Hu D, Han B, Han R, Deng S, Wang Y, Li Q, Wang Y. SnO2 nanorods based sensing material as an isopropanol vapor sensor. New J Chem. 2014;38(6):2443.

    CAS  Google Scholar 

  38. Cai X, Hu D, Deng S, Han B, Wang Y, Wu J, Wang Y. Isopropanol sensing properties of coral-like ZnO-CdO composites by flash preparation via self-sustained decomposition of metal-organic complexes. Sens Actuator B Chem. 2014;198:402.

    CAS  Google Scholar 

  39. Jayababu N, Poloju M, Shruthi J, Reddy MVR. NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors. RSC Adv. 2019;9(24):13765.

    CAS  Google Scholar 

  40. Danilova MN, Pylinina AI, Platonov EA, Yagodovskii VD. Effect of the plasma-chemical treatment of ZnO and NiO on their activity in the dehydrogenation of isopropanol. Russ J Phys Chem A. 2015;89(8):1339.

    CAS  Google Scholar 

  41. Mokoena TP, Hillie KT, Swart HC, Leshabane N, Tshilongo J, Motaung DE. Fabrication of a propanol gas sensor using p-type nickel oxide nanostructures: the effect of ramping rate towards luminescence and gas sensing characteristics. Mater Chem Phys. 2020;253:123316.

    CAS  Google Scholar 

  42. Wang X, Liu F, Chen X, Lu G, Song X, Tian J, Cui H, Zhang G, Gao K. SnO2 core-shell hollow microspheres co-modification with Au and NiO nanoparticles for acetone gas sensing. Powder Technol. 2020;364:159.

    CAS  Google Scholar 

  43. Qin N, Wang X, Xiang Q, Xu J. A biomimetic nest-like ZnO: controllable synthesis and enhanced ethanol response. Sens Actuator B Chem 2014;191770.

  44. Kuo CL, Kuo TJ, Huang MH. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J Phys Chem B. 2005;109(43):20115.

    CAS  Google Scholar 

  45. Ouyang Y, Xia X, Ye H, Wang L, Jiao X, Lei W, Hao Q. Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl Mat Interfaces. 2018;10(4):3549.

    CAS  Google Scholar 

  46. Cai G, Wang X, Cui M, Darmawan P, Wang J, Eh ALS, Lee PS. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy. 2015;12:258.

    CAS  Google Scholar 

  47. Natile MM, Glisenti A. Surface reactivity of NiO: interaction with methanol. Chem Mater. 2002;14(12):4895.

    CAS  Google Scholar 

  48. Yang Q, Guo E, Lu Q, Wei M, Ma J, Xu X, Li Q. Hierarchical CoTiO3@NiO core-shell sub-microbelts as direct Z-scheme photocatalyst for efficient visible-light-driven tetracycline degradation. Appl Surf Sci. 2021;546:148892.

    CAS  Google Scholar 

  49. Xu J, Xue Z, Qin N, Cheng Z, Xiang Q. The crystal facet-dependent gas sensing properties of ZnO nanosheets: experimental and computational study. Sens Actuator B Chem. 2017;242:148.

    CAS  Google Scholar 

  50. Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horizons. 2019;6(3):470.

    CAS  Google Scholar 

  51. Xu Y, Zheng W, Liu X, Zhang L, Zheng L, Yang C, Pinna N, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horizons. 2020;7(6):1519.

    CAS  Google Scholar 

  52. Wang K, Li N, Sun L, Zhang J, Liu X. Free-standing N-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries. ACS Appl Mat Interfaces. 2020;12(33):37506.

    CAS  Google Scholar 

  53. Li Z, Liu X, Zhou M, Zhang S, Cao S, Lei G, Lou C, Zhang J. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J Hazard Mater. 2021;415:125757.

    CAS  Google Scholar 

  54. Huang B, Zhang Z, Zhao C, Cairang L, Bai J, Zhang Y, Mu X, Du J, Wang H, Pan X, Zhou J, Xie E. Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning. Sens Actuator B Chem 2018;2552248.

  55. Wang C, Cheng X, Zhou X, Sun P, Hu X, Shimanoe K, Lu G, Yamazoe N. Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl Mat Interfaces. 2014;6(15):12031.

    CAS  Google Scholar 

  56. Kim HR, Choi KI, Kim KM, Kim ID, Cao G, Lee JH. Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem Commun. 2010;46(28):5061.

    CAS  Google Scholar 

  57. Li Z, Li J, Song L, Gong H, Niu Q. Ionic liquid-assisted synthesis of WO3 particles with enhanced gas sensing properties. J Mater Chem A. 2013;1(48):15377.

    CAS  Google Scholar 

  58. Hu D, Han B, Deng S, Feng Z, Wang Y, Popovic J, Nuskol M, Wang Y, Djerdj I. Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. J Phys Chem C. 2014;118(18):9832.

    CAS  Google Scholar 

  59. Zhang B, Fu W, Meng X, A R, Su P, Yang H. Synthesis of actinomorphic flower-like SnO2 nanorods decorated with CuO nanoparticles and their improved isopropanol sensing properties. Appl Surf Sci. 2018;456:586.

    CAS  Google Scholar 

  60. Zhao Y, Li Y, Wan W, Ren X, Zhao H. Surface defect and gas-sensing performance of the well-aligned Sm-doped SnO2 nanoarrays. Mater Lett. 2018;218:22.

    CAS  Google Scholar 

  61. Wang B, Wang Y, Lei Y, Xie S, Wu N, Gou Y, Han C, Shi Q, Fang D. Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J Mater Chem C. 2016;4(2):295.

    CAS  Google Scholar 

  62. Yang J, Han W, Ma J, Wang C, Shimanoe K, Zhang S, Sun Y, Cheng P, Wang Y, Zhang H, Lu G. Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sens Actuator B Chem. 2021;340:129971.

    CAS  Google Scholar 

  63. Liu F, Chen X, Wang X, Han Y, Song X, Tian J, He X, Cui H. Fabrication of 1D Zn2SnO4 nanowire and 2D ZnO nanosheet hybrid hierarchical structures for use in triethylamine gas sensors. Sens Actuator B Chem. 2019;291:155.

    CAS  Google Scholar 

  64. Duan Z, Zhao Q, Wang S, Huang Q, Yuan Z, Zhang Y, Jiang Y, Tai H. Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens Actuator B Chem. 2020;317:128204.

    CAS  Google Scholar 

  65. Xue Z, Cheng Z, Xu J, Xiang Q, Wang X, Xu J. Controllable evolution of dual defect Zni and VO associate-rich ZnO nanodishes with (0001) exposed facet and its multiple sensitization effect for ethanol detection. ACS Appl Mat Interfaces. 2017;9(47):41559.

    CAS  Google Scholar 

  66. Han N, Wu X, Chai L, Liu H, Chen Y. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sens Actuator B Chem. 2010;150(1):230.

    CAS  Google Scholar 

  67. Xu Y, Zheng L, Yang C, Liu X, Zhang J. Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sens Actuator B Chem. 2020;304:127237.

    CAS  Google Scholar 

  68. Hofmann OT, Deinert JC, Xu Y, Rinke P, Stähler J, Wolf M, Scheffler M. Large work function reduction by adsorption of a molecule with a negative electron affinity: pyridine on ZnO (1010). J Chem Phys. 2013;139(17):174701.

    Google Scholar 

  69. Rai P, Yoon JW, Jeong HM, Hwang SJ, Kwak CH, Lee JH. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications. Nanoscale. 2014;6(14):8292.

    CAS  Google Scholar 

  70. Zhang Y, Zhang J, Jiang Y, Duan Z, Liu B, Zhao Q, Wang S, Yuan Z, Tai H. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sens Actuator B Chem. 2020;319:128293.

    CAS  Google Scholar 

  71. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuator B Chem 2019;298126874.

  72. Duan ZH, Zhao QN, Li CZ, Wang S, Jiang YD, Zhang YJ, Liu BH, Tai HL. Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 2021;40(7):1762.

    CAS  Google Scholar 

  73. Nair SS, Illyaskutty N, Tam B, Yazaydin AO, Emmerich K, Steudel A, Hashem T, Schöttner L, Wöll C, Kohler H, Gliemann H. ZnO@ZIF-8: gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity. Sens Actuator B Chem. 2020;304:127184.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Distinguished Taishan Scholars in Climbing Plan (No. tspd20161006), the Major-Special Science and Technology Projects in Shandong Province (Nos. 2019JZZY010303 and 2019JZZY010360) and Shandong Provincial Natural Science Foundation (No. ZR2019MEM049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Zhen Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SC., Wang, XH., Qiao, GQ. et al. NiO nanoparticles-decorated ZnO hierarchical structures for isopropanol gas sensing. Rare Met. 41, 960–971 (2022). https://doi.org/10.1007/s12598-021-01846-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01846-6

Keywords

Navigation