Skip to main content

Advertisement

Log in

Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Sodium-ion batteries (SIBs), as highly promising alternatives to lithium-ion batteries (LIBs), can be widely used in a variety of next-generation energy storage systems. However, the current commercial graphite anodes of LIBs could not intercalate sodium ions to appreciable extent, and the electrochemical irreversibility hinders further application. Searching for a suitable anode material is a critical issue for the successful development of SIBs. Herein, we report a convenient, fast, and large-scale preparation method of mesoporous FeS2 nanorods. Our specially designed one-dimensional mesoporous structure of FeS2 takes full advantage of ultra-high strain relaxation as well as fast Na+ transport rate arising from microstructural characteristics. As a result, the mesoporous FeS2 nanorods exhibited excellent sodium storage performance. The discharge capacity was retained at 711.1 mAh·g−1 after 450 cycles at a current density of 1000 mA·g−1. The special microstructure and superior performance of mesoporous FeS2 nanorods represent a critical step for transition metal sulfides electrode materials toward practical SIBs application.

Graphic abstract

摘要

作为锂离子电池 (LIBs) 的极具潜力的替代品, 钠离子电池 (SIBs) 非常有可能广泛应用于下一代大规模储能系统。然而, 目前商业化的锂离子电池石墨负极材料无法稳定地嵌入和脱出钠离子, 电化学储钠的不可逆性在一定程度上阻碍了石墨负极在钠离子电池上的应用, 寻找合适的负极材料是制约钠离子电池发展的关键因素。我们开发了一种可便捷, 快速并大规模制备介孔FeS2纳米棒的方法。我们设计并成功制备的一维介孔FeS2纳米材料可充分利用其微观结构特性, 具有超高应变弛豫效应及钠离子传输速率。电化学测试结果表明介孔FeS2纳米棒表现出优异的储钠性能。在较高的电流密度下 (1000 mA·g−1), 循环450次后放电容量仍保持在711.1 mA·g−1。介孔FeS2纳米棒独特的微观结构及优异的电化学性能为推动过渡金属硫化物电极材料在钠离子电池应用方面发挥了关键作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zhang JL, Li CL, Wang WH, Yu YW. Facile synthesis of hollow Cu3P for sodium-ion batteries anode. Rare Met. 2021. https://doi.org/10.1007/s12598-021-01718-z.

    Article  Google Scholar 

  2. Zhang C, Wei D, Wang F, Zhang G, Duan J, Han F, Duan H, Liu J. Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J Energy Chem. 2021;53:26.

    Article  Google Scholar 

  3. Delmas C, Carlier D, Guignard M. The layered oxides in lithium and sodium-ion batteries: a solid-state chemistry approach. Adv Energy Mater. 2021;11(2):2001201.

    Article  CAS  Google Scholar 

  4. Kang S, Yang CE, Jeon B, Koo B, Hong ST, Lee H. A crystalline organic electrolyte for safe, room-temperature operable all-solid-state sodium batteries. Energy Storage Mater. 2021;39:259.

    Article  Google Scholar 

  5. Zhong XB, Gao F, He C, Radjenovic P, Tian ZQ, Li JF. Ultrahigh-rate-performance hierarchical structured Na2Ti2O5@RGO sodium-ion batteries and revealing the storage mechanism using in situ Raman spectroscopy. J Phys Chem C. 2020;124(20):10845.

    Article  CAS  Google Scholar 

  6. Zhong XB, He C, Gao F, Tian ZQ, Li JF. In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2–Na2/3Ni1/3Mn2/3O2: cathode materials for sodium batteries. J Energy Chem. 2021;53:323.

    Article  Google Scholar 

  7. Huang M, Liu JX, Huang P, Hu H, Lai C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2021;40(2):425.

    Article  CAS  Google Scholar 

  8. Chen Y, Hu X, Evanko B, Sun X, Li X, Hou T, Cai S, Zheng C, Hu W, Stucky GD. High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy. 2018;46:117.

    Article  CAS  Google Scholar 

  9. Man Z, Li P, Zhou D, Wang Y, Liang X, Zang R, Li P, Zuo Y, Lam YM, Wang G. Two birds with one stone: FeS2@C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 2020;20(5):3769.

    Article  CAS  Google Scholar 

  10. Mohanta J, Kim HJ, Jeong SM, Cho JS, Ahn HJ, Ahn JH, Kim JK. High-performance quasi-solid-state flexible sodium metal battery: substrate-free FeS2–C composite fibers cathode and polyimide film-stuck sodium metal anode. Chem Eng J. 2020;391:123510.

    Article  CAS  Google Scholar 

  11. Li X, Qi SH, Zhang WC, Feng YZ, Ma JM. Recent progress on FeS2 as anodes for metal-ion batteries. Rare Met. 2020;39(11):1239.

    Article  CAS  Google Scholar 

  12. Chen C, Yang Y, Tang X, Qiu R, Wang S, Cao G, Zhang M. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small. 2019;15(10):1804740.

    Article  Google Scholar 

  13. Chen K, Li G, Wang Y, Chen W, Mi L. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy Environ. 2020;5(1):50.

    Article  Google Scholar 

  14. Kitajou A, Yamaguchi J, Hara S, Okada S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J Power Sources. 2014;247:391.

    Article  CAS  Google Scholar 

  15. Lin Z, Xiong X, Fan M, Xie D, Wang G, Yang C, Liu M. Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale. 2019;11(9):3773.

    Article  CAS  Google Scholar 

  16. Liu Q, Zhang SJ, Xiang CC, Luo CX, Zhang PF, Shi CG, Zhou Y, Li JT, Huang L, Sun SG. Cubic MnS-FeS2 composites derived from a prussian blue analogue as anode materials for sodium-ion batteries with long-term cycle stability. ACS Appl Mater Interfaces. 2020;12(39):43624.

    Article  Google Scholar 

  17. Lu Z, Wang N, Zhang Y, Xue P, Guo M, Tang B, Bai Z, Dou S. Pyrite FeS2@C nanorods as smart cathode for sodium ion battery with ultra-long lifespan and notable rate performance from tunable pseudocapacitance. Electrochim Acta. 2018;260:755.

    Article  CAS  Google Scholar 

  18. Lu Z, Zhai Y, Wang N, Zhang Y, Xue P, Guo M, Tang B, Huang D, Wang W, Bai Z, Dou S. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chem Eng J. 2020;380:122455.

    Article  CAS  Google Scholar 

  19. Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo WB. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano. 2020;14(3):3610.

    Article  CAS  Google Scholar 

  20. Su Q, Lu Y, Liu S, Zhang X, Lin Y, Fu R, Wu D. Nanonetwork-structured yolk-shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon. 2018;140:433.

    Article  CAS  Google Scholar 

  21. Wang F, Zhang W, Zhou H, Chen H, Huang Z, Yan Z, Jiang R, Wang C, Tan Z, Kuang Y. Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem Eng J. 2020;380:122549.

    Article  CAS  Google Scholar 

  22. Wu Y, Wang Y, Shao S, Ma Y, Zhang J, Kang W, Xu J. Transformation of two-dimensional iron sulfide nanosheets from FeS2 to FeS as high-rate anodes for pseudocapacitive sodium storage. ACS Appl Energy Mater. 2020;3(12):12672.

    Article  CAS  Google Scholar 

  23. Xu X, Ying H, Zhang S, Meng Z, Yan X, Han WQ. Biomass-derived 3D interconnected porous carbon-encapsulated nano-FeS2 for high-performance lithium-ion batteries. ACS Appl Energy Mater. 2020;3(6):5589.

    Article  CAS  Google Scholar 

  24. Yao L, Xia W, Zhang H, Dong H, Xin HL, Gao P, Cai R, Zhu C, Wu Y, Nie M, Lei S, Sun L, Xu F. In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering. Nano Energy. 2019;60:424.

    Article  CAS  Google Scholar 

  25. Yao Q, Zhang J, Shi X, Deng B, Hou K, Zhao Y, Guan L. Rational synthesis of two-dimensional G@porous FeS2@C composite as high-rate anode materials for sodium/potassium ion batteries. Electrochim Acta. 2019;307:118.

    Article  CAS  Google Scholar 

  26. Zhang K, Park M, Zhou L, Lee GH, Shin J, Hu Z, Chou SL, Chen J, Kang YM. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew Chem Int Ed Engl. 2016;55(41):12822.

    Article  CAS  Google Scholar 

  27. Zhao Y, Wang J, Ma C, Li Y, Shi J, Shao Z. Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chem Eng J. 2019;378:122168.

    Article  CAS  Google Scholar 

  28. Zhong XB, Yang ZZ, Wang HY, Lu L, Jin B, Zha M, Jiang QC. A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J Power Sources. 2016;306:718.

    Article  CAS  Google Scholar 

  29. Shao M, Cheng Y, Zhang T, Li S, Zhang W, Zheng B, Wu J, Xiong WW, Huo F, Lu J. Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Appl Mater Inter. 2018;10(39):33097.

    Article  CAS  Google Scholar 

  30. Wan H, Mwizerwa JP, Qi X, Xu X, Li H, Zhang Q, Cai L, Hu YS, Yao X. Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances. ACS Appl Mater Inter. 2018;10(15):12300.

    Article  CAS  Google Scholar 

  31. Lu Z, Wang N, Zhang Y, Xue P, Guo M, Tang B, Xu X, Wang W, Bai Z, Dou S. Metal–organic framework-derived sea-cucumber-like FeS2@C nanorods with outstanding pseudocapacitive Na-ion storage properties. ACS Appl Energy Mater. 2018;1(11):6234.

    Article  Google Scholar 

  32. Wu X, Zhao H, Xu J, Wang Y, Dai S, Xu T, Liu S, Zhang S, Wang X, Li X. Rational synthesis of marcacite FeS2 hollow microspheres for high-rate and long-life sodium ion battery anode. J Alloys Compd. 2020;825:154173.

    Article  CAS  Google Scholar 

  33. Zhong XB, Wang XX, Wang HY, Yang ZZ, Jiang YX, Li JF, Tian ZQ. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation. Nano Res. 2018;11(7):3814.

    Article  CAS  Google Scholar 

  34. Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7:12122.

    Article  CAS  Google Scholar 

  35. Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano. 2016;10(11):10211.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21905239 and U1910208), the Natural Science Foundation of Shanxi Province of China (Nos. 201901D211265, 201901D211257, 201901D111137 and 201901D211208), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Nos. 2019L0609 and 2019L0605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Hui Zhang, Peng-Fei Hu or Jun-Fei Liang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZW., Zhong, XB., Zhang, YH. et al. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare Met. 41, 21–28 (2022). https://doi.org/10.1007/s12598-021-01835-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01835-9

Navigation