Skip to main content
Log in

Microstructure and magnetic performance of Nd–Y–Ce–Fe–B sintered magnets after annealing

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Annealing has been widely recognized as a crucial approach to modify the microstructure and enhance the coercivity of Nd–Fe–B magnets. However, in the context of Nd–Y–Ce–Fe–B magnets with multiple rare earths (REs) exhibiting different diffusion behaviors, annealing effects on the magnetic properties become more complicated and remain unknown. In present work, through a comparative study between as-sintered and annealed Nd–Y–Ce–Fe–B magnet upon 50 wt% Y–Ce co-substitution of total REs, we found that annealing process surprisingly enhances the remanence from 1.17 to 1.20 T, with simultaneous coercivity increment from 612.9 to 660.7 kA·m−1, resulting in drastically improved maximum energy product from 242.0 to 263.5 kJ·m−3. Such a peculiar remanence enhancement is closely correlated to the preferential Y/Nd infiltration into RE2Fe14B main phase and Ce segregation into REFe2 intergranular phase, which consequently improve the intrinsic magnetism, as evaluated by Curie temperature (TC), saturation magnetic polarization (JS) and magnetocrystalline anisotropy field (HA). Present work delights that different metallurgical behaviors of Nd/Y/Ce exert influential effects on the intrinsic and extrinsic magnetic properties and provide a novel approach toward high-performance 2:14:1-type permanent magnets based on abundant RE mixtures.

Graphic abstract

摘要

退火已被广泛认为是改善Nd-Fe-B磁体微观组织和增强矫顽力的重要途径。然而, 在Nd-Y-Ce-Fe-B磁体中不同稀土元素的扩散行为各异, 退火对磁性能的影响更加复杂。本工作通过对比研究烧结态和退火态的50 wt% Y-Ce共取代磁体, 发现退火使剩磁从1.17 T提高到1.20 T, 同时矫顽力从612.9 kA·m−1 提高到660.7 kA·m−1, 最大磁能积从242.0 kJ·m−3提高到263.5 kJ·m−3。研究发现, 退火过程中Y/Nd优先进入RE2Fe14B主相, 而Ce更易富集于REFe2晶界相。这种元素扩散行为提高了退火态Nd-Y-Ce-Fe-B磁体的本征磁性能(包括居里温度TC, 饱和磁极化强度JS, 磁晶各向异性场HA), 从而导致剩磁的异常提升。本工作发现稀土元素Nd/Y/Ce的不同扩散行为会显著影响磁体的内禀和外禀磁性能, 为制备高性能2:14:1型混合稀土永磁提供了新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Liu WQ, Chang C, Yue M, Yang JS, Zhang DT, Zhang JX, Liu YQ. Coercivity, microstructure and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles. Rare Met. 2017;36(9):718.

    Article  Google Scholar 

  2. Jones N. The pull of stronger magnets. Nature. 2011;472(7341):22.

    Article  CAS  Google Scholar 

  3. Gutfleisch O, Willard MA, Bruck E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 2011;23(7):821.

    Article  CAS  Google Scholar 

  4. Zhang XY. Heterostructures: new opportunities for functional materials. Mater Res Lett. 2019;8(2):49.

    Article  Google Scholar 

  5. Ma Q, Zhu JT, Zhang XF, Zhao ZR, Liu YL, Wang GF, Li YF, Li ZB. Achievement of high performance of sintered R-Fe-B magnets based on misch-metal doped with PrNd nanoparticles. Rare Met. 2018;36(3):237.

    Article  Google Scholar 

  6. Zeng LL, Li JJ, Huang XY, Zhong J, Yu XQ, Zhong ZC. Thermal stability and corrosion resistance of sintered Nd-Fe-B magnets with intergranular addition of Dy80Fe13Ga. Chin J Rare Met. 2019;43(7):779.

  7. Jin JY, Ma TY, Zhang YJ, Bai GH, Yan M. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit: solution to global rare earth criticality. Sci Rep. 2016;6:32200.

    Article  CAS  Google Scholar 

  8. Li Z, Li YQ, Liu WQ, Wu D, Chen H, Xia WX, Yue M. Origin of low coercivity of high La-Ce-containing Nd-Fe-B sintered magnets. Rare Met. 2021;40(1):180.

    Article  CAS  Google Scholar 

  9. Shi Q, Liu Y, Li J, Zhao W, Wang RQ, Gao X. Significant improvement of the 2:14:1 phase formability and magnetic properties of multi-phases RE-Fe-B magnets with La substitution for Ce. J Magn Magn Mater. 2019;476(4):1.

    Article  CAS  Google Scholar 

  10. Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF, Liu F. Magnetic properties of melt-spun MM-Fe-B ribbons with different wheel speeds and mischmetal contents. Rare Met. 2017;36(12):992.

    Article  CAS  Google Scholar 

  11. Yan M, Jin JY, Ma TY, Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets, Chin. Phys., B. 2019; 28 (7): 077507

  12. Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Apply Phys. 1986;59(3):873.

    Article  CAS  Google Scholar 

  13. Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys. 1991;63(4):819.

    Article  CAS  Google Scholar 

  14. Peng BX, Ma TY, Zhang YJ, Jin JY, Yan M. Improved thermal stability of Nd-Ce-Fe-B sintered magnets by Y substitution. Scr Mater. 2017;131:11.

    Article  CAS  Google Scholar 

  15. Ding GF, Liao SC, Di JH, Zheng B, Guo S, Chen RJ, Yan AR. Microstructure of core-shell NdY-Fe-B sintered magnets with a high coercivity and excellent thermal stability. Acta Mater. 2020;194:547.

    Article  CAS  Google Scholar 

  16. Liu YH, Guo S, Chen RJ, Lee D, Yan A. Effect of heat treatment on microstructure and thermal stability of Nd-Fe-B sintered magnets. IEEE Trans Magn. 2011;47(10):3270.

    Article  CAS  Google Scholar 

  17. Sasaki TT, Ohkubo T, Hono K. Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets. Acta Mater. 2016;115:269.

    Article  CAS  Google Scholar 

  18. Sepehri-Amin H, Ohkubo T, Shima T, Hono K. Grain boundary and interface chemistry of an Nd-Fe-B-based sintered magnet. Acta Mater. 2012;60:819.

    Article  CAS  Google Scholar 

  19. Sepehri-Amin H, Une Y, Ohkubo T, Hono K, Sagawa M. Microstructure of fine-grained Nd-Fe-B sintered magnets with high coercivity. Scr Mater. 2011;65(5):396.

    Article  CAS  Google Scholar 

  20. Li WF, Ohkubo T, Hono K. Effect of post-sinter annealing on the coercivity and microstructure of Nd-Fe-B permanent magnets. Acta Mater. 2009;57(5):1337.

    Article  CAS  Google Scholar 

  21. Vial F, Joly F, Nevalainen E, Sagawa M, Hiraga K, Park KT. Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment. J Magn Magn Mater. 2002;242:1329.

    Article  Google Scholar 

  22. Jin JY, Zhang ZH, Zhao LZ, Peng BX, Liu YS, Greneche JM, Yan M. Evolution of REFe2 (RE = rare earth) phase in Nd-Ce-Fe-B magnets and resultant Ce segregation. Scr Mater. 2019;170:150.

  23. Liu XB, Altounian Z, Huang MD, Zhang QM, Liu JP. The partitioning of La and Y in Nd-Fe-B magnets: a first-principles study. J Alloys Compd. 2013;549:366.

    Article  CAS  Google Scholar 

  24. Chen HS, Han R, Qu JT, Yao Y, Liu JQ, Li W, Ringer SP, Dong SZ , Zheng, RK. Atomic scale insights into the segregation/partitioning behaviour in as-sintered multi-main-phase Nd-Ce-Fe-B permanent magnets. J Alloys Compd., 2020; 6: 156248.

  25. Zhang YJ, Ma TY, Yan M, Jin JY, Wu B, Peng BX, Liu YS, Yue M, Liu CY. Post-sinter annealing influences on coercivity of multi-main-phase Nd-Ce-Fe-B magnets. Acta Mater. 2018;146:97.

    Article  CAS  Google Scholar 

  26. Chen K, Guo S, Fan XD, Ding GF, Chen L, Chen RJ, Lee D, Yan AR. Coercivity enhancement of Ce-Fe-B sintered magnets by low-melting point intergranular additive. J Rare Earth. 2017;35(2):158.

    Article  CAS  Google Scholar 

  27. Liu YC, Li HW, Li KS, Yu DB, Jin JL, Luo Y, Sun L, Quan NT. Magnetic properties optimization of nanocomposite Nd9Fe85B6 magnets by controlling microstructure of as-quenched ribbons. Rare Met. 2014;33(3):299.

    Article  CAS  Google Scholar 

  28. Sasaki TT, Ohkubo T, Takada Y, Sato T, Kato A, Kaneko Y, Hono K. Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd-Fe-B sintered magnet. Scr Mater. 2016;113:218.

    Article  CAS  Google Scholar 

  29. Xu KS, Quan LT, Xie JJ, Li HW, Luo Y, Yu DB. Mechanism of magnetic properties enhancement by increasing Ce content in Ce-Fe-B ribbons. Chin J Rare Met. 2020;44(6):571.

    Google Scholar 

  30. Zhao LZ, Zhang JS, Ahmed G, Liao XF, Liu ZW, Greneche JM. Understanding the element segregation and phase separation in the Ce-substituted Nd-(Fe, Co)-B based alloys. Sci Rep. 2018;8:1.

    Google Scholar 

  31. Huang JX, Liu Y, Li J, Zhao W, Shi Q. Microstructure and magnetic properties of sintered Nd-Fe-B magnets with Ce substitution for Nd by intergranular-alloy method. Rare Met. 2020;39(1):62.

    Article  CAS  Google Scholar 

  32. Hono K, Sepehri-Amin H. Strategy for high-coercivity Nd-Fe-B magnets. Scr Mater. 2012;67(6):530.

    Article  CAS  Google Scholar 

  33. Fan XD, Ding GF, K. Chen, Guo S, You GY, Chen RJ, Lee D, Yan A. Whole process metallurgical behavior of the high-abundance rare-earth elements LRE (La, Ce and Y) and the magnetic performance of Nd0.75LRE0.25-Fe-B sintered magnets. Acta Mater., 2018; 154: 343.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51801181), Zhejiang Province Public Welfare Technology Application Research Project (No. LGG20E010007), Natural Science Foundation of Zhejiang Province (No. LQ19E010005), the Key Research and Development Program of Zhejiang Province (Nos. 2021C01192 and 2021C01023) and the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization (No. 2020Z2122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Ying Jin or Mi Yan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XL., Wu, XW., Jin, JY. et al. Microstructure and magnetic performance of Nd–Y–Ce–Fe–B sintered magnets after annealing. Rare Met. 41, 859–864 (2022). https://doi.org/10.1007/s12598-021-01829-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01829-7

Navigation