Skip to main content

Advertisement

Log in

Tin-induced microstructural changes and associated corrosion resistance of biodegradable Mg–Zn alloy

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

作为一种新型可降解医用金属材料, Mg–Zn合金已被广泛应用于临床中。然而其在生物体液环境中较差的腐蚀性能严重制约了其推广和使用。本文将一种人体必需元素——Sn元素添加到Mg–Zn合金中, 制备了Mg–2Zn–3Sn三元系合金, 提高了镁合金的耐蚀性和力学性能。本文系统地研究了铸态Mg–2Zn和Mg–2Zn–3Sn合金的微观组织和腐蚀性能, 为将来应用于生物可降解植入物做准备。采用光学电镜(LM)、扫描电镜(SEM)、X射线衍射(XRD)和能谱(EDS)分析了铸态Mg–2Zn和Mg–2Zn– 3Sn合金的微观组织。同时, 对Mg–2Zn和Mg–2Zn– 3sn合金进行了电化学测试和Hank’s溶液(模拟人体体液)浸泡测试。结果表明:铸态Mg–2Zn–3Sn合金由α–Mg基体和Mg2Sn相组成。与Mg–2Zn合金相比, Mg–2Zn– 3Sn合金中第二相数量明显增加, 晶粒细化(100–130 μm 到 50–70 μm)。电化学试验和Hank’s溶液浸泡试验结果表明, 添加3 wt% Sn时Mg–2Zn合金的腐蚀电流降低了114.51 μA·cm−2, 腐蚀速率降低了54.3%。Sn的加入有效地提高了Mg–2Zn合金的耐蚀性。此外, 还探讨了Sn对Mg–2Zn合金腐蚀性能的改善机理。研究结果可为后续开发可降解的Mg–Zn–Sn合金提供理论和数据支持。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hermawan H, Ramdan D, Djuansjah JR. Metals for biomedical applications. Biomed Eng Theory Appl. 2011;1:411.

    Google Scholar 

  2. Song ZH, Chou WD, Chen G, Zhao GX, Ma LC. Mechanical analysis of candy-plug NiTi alloy vascular stents by finite element analysis. Chin J Rare Met. 2020;44(7):706.

    Google Scholar 

  3. Willbold E, Kaya AA, Kaya RA, Witte F. Corrosion of magnesium alloy AZ31 screws is dependent on implantation site. Mater Sci Eng B. 2011;176(20):1835.

    Article  CAS  Google Scholar 

  4. Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C. 2016;68:948.

    Article  CAS  Google Scholar 

  5. Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561.

    Article  CAS  Google Scholar 

  6. Ming G, Zheng M, Iniobong PE, Tan LL, Yang K. Microstructure, mechanical and corrosion properties of Mg–Zn-Nd alloy with different accumulative area reduction after room temperature drawing. Rare Met. 2021;40(4):897.

    Article  Google Scholar 

  7. Liu TT, Pan FS, Zhang XY. Effect of Sc addition on the work-hardening behavior of ZK60 magnesium alloy. Mater Des. 2013;43:572.

    Article  CAS  Google Scholar 

  8. Liu HN, Zhang K, Li XG, Li YJ, Ma ML, Shi GL, Yuan JW, Wang KK. Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods. Rare Met. 2021;40(3):643.

    Article  CAS  Google Scholar 

  9. Jiang WY, Wang JF, Liu QS, Zhao WK, Jiang DM, Guo SF. Low hydrogen release behavior and antibacterial property of Mg–4Zn–xSn alloys. Mater Lett. 2019;241:88.

    Article  CAS  Google Scholar 

  10. Zhang SX, Zhang XN, Zhao CL, Li JN, Song Y, Xie CY, Tao HR, Zhang Y, He YH, Jiang Y, Bian YJ. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(3):626.

    Article  CAS  Google Scholar 

  11. Cai SH, Lei T, Li NF, Feng FF. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C. 2012;32(8):2570.

    Article  CAS  Google Scholar 

  12. Song Y, Han EH, Shan D, Chang DY, You BS. The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corros Sci. 2012;65:322.

    Article  CAS  Google Scholar 

  13. Zhao ZX, Hua ZM, Li DW, Wei DS, Liu Y, Wang JG, Luo D, Wang HY. Effect of Sn content on the microstructure, mechanical properties and corrosion behavior of biodegradable Mg–xSn (1, 3 and 5 wt%) -1Zn–0.5Ca alloys. Materials. 2018;11:2378.

    Article  CAS  Google Scholar 

  14. Shi BQ, Chen RS, Ke W. Solid solution strengthening in polycrystals of Mg–Sn binary alloys. J Alloy Compd. 2011;509(7):3357.

    Article  CAS  Google Scholar 

  15. Sasaki TT, Oh-Ishi K, Ohkubo T, Hono K. Enhanced age hardening response by the addition of Zn in Mg–Sn alloys. Scr Mater. 2006;55(3):251.

    Article  CAS  Google Scholar 

  16. Majchrowicz K, Jóźwik P, Chromiński W. Microstructure, texture and mechanical properties of Mg–6Sn alloy processed by differential speed rolling. Materials. 2020;14:83.

    Article  Google Scholar 

  17. Ha HY, Kang JY, Kim SG, Kim B, Park SS, Yim CD, Yim BS. Influences of metallurgical factors on the corrosion behaviour of extruded binary Mg–Sn alloys. Corros Sci. 2014;82:369.

    Article  CAS  Google Scholar 

  18. Liu HM, Chen YG, Tang YB, Wei SH, Niu G. The microstructure, tensile properties, and creep behavior of as-cast Mg-(1–10)%Sn alloys. J Alloy Compd. 2007;440(1–2):122.

    Article  CAS  Google Scholar 

  19. Zhao WK, Wang JF, Jiang WY, Qiao B, Wang YY, Li YL, Jiang DM. A novel biodegradable Mg–1Zn–0.5Sn alloy: mechanical properties, corrosion behavior, biocompatibility, and antibacterial activity. J Magnes Alloy. 2020;8(2):374.

    Article  CAS  Google Scholar 

  20. Jiang P, Blawert C, Scharnagl N. Mechanistic understanding of the corrosion behavior of Mg4Zn0.2Sn alloys: from the perspective view of microstructure. Corros Sci. 2020;174:108863.

    Article  CAS  Google Scholar 

  21. Moussa ME, Mohamed HI, Waly MA, Al-Ganainy GS, Ahmed AB, Talaat MS. Comparison study of Sn and Bi addition on microstructure and bio-degradation rate of as-cast Mg–4wt% Zn alloy without and with Ca–P coating. J Alloy Compd. 2019;792:1239.

    Article  CAS  Google Scholar 

  22. Ha H, Kang J, Yim CD, Yang J, You BS. Role of hydrogen evolution rate in determining the corrosion rate of extruded Mg–5Sn–(1–4 wt%)Zn alloys. Corros Sci. 2014;89:275.

    Article  CAS  Google Scholar 

  23. Wang C, Chen Y, Xiao S, Ding WC, Liu X. Thermal conductivity and mechanical properties of as-cast Mg–3Zn–(0.5–3.5)Sn alloys. Rare Met Mater Eng. 2013;42(10):2019.

    Article  CAS  Google Scholar 

  24. Wang JL, Pei J, Yuan JN, Zhu ML, Yang Z, Li JP. Effect of Sn element on microstructure and corrosion resistance of biomedical Mg–4.5Zn–Sn alloys. Trans Mater Heat Treat. 2018;39(6):26.

    CAS  Google Scholar 

  25. Zhou YZ, Wu P, Yang YW, Gao D, Feng P, Gao CD, Wu H, Liu Y, Bian H, Shuai CJ. The microstructure, mechanical properties and degradation behavior of laser-melted MgSn alloys. J Alloy Compd. 2016;687:109.

    Article  CAS  Google Scholar 

  26. Zhao CX, Chen XH, Pan FS, Gao SY, Liu XF. Effect of Sn content on strain hardening behavior of as-extruded Mg–Sn alloys. Mater Sci Eng A. 2018;713:244.

    Article  CAS  Google Scholar 

  27. Zhang SS, Jow TR. Aluminum corrosion in electrolyte of Li-ion battery. J Power Sources. 2002;109(2):458.

    Article  CAS  Google Scholar 

  28. Chen JH, Chen ZH, Yan HG, Zhang FJ. Effects of Sn and Ca additions on microstructure, mechanical properties, and corrosion resistance of the as-cast Mg–Zn–Al-based alloy. Mater Corros. 2008;59:934.

    Article  Google Scholar 

  29. Zhao CY, Pan FS, Zhao S, Pan HC, Song K, Tang AT. Preparation and characterization of as-extruded Mg–Sn alloys for orthopedic applications. Mater Des. 2015;70:60.

    Article  CAS  Google Scholar 

  30. Liu JF, Jiang WY, Wang C, Li YN, Zhao SC. Effect of Sn on microstructure and corrosion resistance of Mg–Nd–Zn–Zr Alloys. Spec Cast Nonferrous Alloy. 2017;37(1):110.

    CAS  Google Scholar 

  31. Zhao FF, Wan CH. Ca and Ce applied in corrosion property modification of ZK60 magnesium alloy. J Huhan Inst Shipbuilding Technol. 2015;14(3):41.

    Google Scholar 

  32. Shi ZM, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci. 2010;52(2):579.

    Article  CAS  Google Scholar 

  33. Li HS, Wang WF, Wu FS, Zhan HT, Zhang GB, Qiu F. A new sand–wedge–forming mechanism in an extra-arid area. Geomorphology. 2014;211:43.

    Article  Google Scholar 

  34. Wang JF, Li Y, Huang S, Zhou XE. Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5 wt% NaCl solution. Appl Surf Sci. 2014;317:1143.

    Article  CAS  Google Scholar 

  35. Liu XB, Shan DY, Song YW, Chen RS, Han EH. Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg–7Sn magnesium alloy. Electrochim Acta. 2011;56:2582.

    Article  CAS  Google Scholar 

  36. Yang LH, Zhang ML, Li JQ, Yu X, Niu ZY. Stannate conversion coatings on Mg–8Li alloy. J Alloy Compd. 2009;471(1–2):197.

    Article  CAS  Google Scholar 

  37. Lee YL, Chu YR, Chen FJ, Lin CS. Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys. Appl Surf Sci. 2013;276:578.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51472133) and Shandong Natural Science Funds (No. ZR2020ME009)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Ke-Zheng Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhao, P., Cao, XQ. et al. Tin-induced microstructural changes and associated corrosion resistance of biodegradable Mg–Zn alloy. Rare Met. 41, 883–888 (2022). https://doi.org/10.1007/s12598-021-01823-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01823-z

Navigation