Skip to main content
Log in

Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To develop smart and efficient near-infrared (NIR) organic dyes for photothermal cancer therapy is of great challenge. Herein, a pH-sensitive NIR dye BTN with donor–acceptor–donor scaffold has been synthesized. Two periphery electron-donating dimethylamine groups in BTN can not only promote the intramolecular photoinduced electron transfer (PET), but also bind protons to transform into electron-deficient ammonium cation for enhanced intramolecular charge transfer (ICT) under acidic circumstance. Through enveloping with amphiphilic polymeric 1,2-distearoyl-ras-glycerol-3-phosphatidyl ethanolamine-N-polyethyleneglycol-2000 (DSPE-mPEG2000), BTN nanoparticles (NPs) were fabricated with robust NIR absorption covering 600–900 nm, excellent photothermal conversion efficiency (43.2%), and good photostability. Additionally, BTN NPs can selectively target lysosomes. Through tailing intravenous injection into tumor-bearing nude mice, BTN NPs demonstrate outstanding photoacoustic/photothermal/fluorescence imaging-guided photothermal therapy for tumor ablation.

Graphic abstract

摘要

开发用于癌症光热治疗的智能、高效型近红外 (NIR) 有机染料至关重要。本文合成了具有供体-受体-供体结构的pH敏感型NIR染料BTN, 其中两侧的给电子性二甲胺基团不仅可以促进分子内光致电子转移 (PET), 而且可以结合质子转化为吸电子性铵根阳离子, 在酸性条件下增强分子内电荷转移 (ICT)。通过两亲性聚合物DSPE-mPEG2000包裹, 制备了在600-900 nm范围内吸收能力强的BTN纳米颗粒 (NPs), 其光热转换性能优异 (43.2%)、光稳定性好。通过尾静脉注射到荷瘤裸鼠体内, BTN NPs表现出优异的光声/光热/荧光成像引导的光热治疗性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869.

    CAS  Google Scholar 

  2. Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev. 2019;48(1):38.

    CAS  Google Scholar 

  3. Feng G, Zhang GQ, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev. 2020;49(22):8179.

    CAS  Google Scholar 

  4. Chen Y, Li L, Chen W, Chen H, Yin J. Near-infrared small molecular fluorescent dyes for photothermal therapy. Chin Chem Lett. 2019;30(7):1353.

    CAS  Google Scholar 

  5. Ji C, Cheng W, Yuan Q, Müllen K, Yin M. From Dyestuff Chemistry to cancer theranostics: the rise of rylenecarboximides. Acc Chem Res. 2019;52(8):2266.

    CAS  Google Scholar 

  6. Liu S, Zhou X, Zhang H, Ou H, Lam JWY, Liu Y, Shi L, Ding D, Tang BZ. Molecular motion in aggregates: manipulating TICT for boosting photothermal theranostics. J Am Chem Soc. 2019;141(13):5359.

    CAS  Google Scholar 

  7. Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nat Commun. 2018;9(1):1848.

    Google Scholar 

  8. Gu X, Zhang X, Ma H, Jia S, Zhang P, Zhao Y, Wang J, Zheng X, Lam JWY, Ding D, Tang BZ. Corannulene-incorporated AIE nanodots with highly suppressed nonradiative decay for boosted cancer phototheranostics in vivo. Adv Mater. 2018;30(26):1801065.

    Google Scholar 

  9. Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev. 2018;47(7):2280.

    CAS  Google Scholar 

  10. Liu S, Li Y, Kwok RTK, Lam JWY, Tang BZ. Structural and process controls of AIEgens for NIR-II theranostics. Chem Sci. 2021;12(10):3427.

    CAS  Google Scholar 

  11. Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic dye based nanoparticles for cancer phototheranostics. Small. 2018;14(25):1704247.

    Google Scholar 

  12. Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X. Aza-BODIPY-based nanomedicines in cancer phototheranostics. ACS Appl Mater Interfaces. 2020;12(24):26914.

    CAS  Google Scholar 

  13. Li L, Chen Y, Chen W, Tan Y, Chen H, Yin J. Photodynamic therapy based on organic small molecular fluorescent dyes. Chin Chem Lett. 2019;30(10):1689.

    CAS  Google Scholar 

  14. Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45(23):6597.

    CAS  Google Scholar 

  15. Chen M, Zhang X, Liu J, Liu F, Zhang R, Wei P, Feng H, Tu M, Qin A, Lam JWY, Ding D, Tang BZ, Lam JWY, Ding D, Zhong Tang B. Evoking photothermy by capturing intramolecular bond stretching vibration-induced dark-state energy. ACS Nano. 2020;14(4):4265.

    CAS  Google Scholar 

  16. Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li K, Wang L, Wang D, Tang BZ. An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy. Adv Mater. 2020;32(36):2003210.

    CAS  Google Scholar 

  17. Liang P, Tang Q, Cai Y, Liu G, Si W, Shao J, Huang W, Zhang Q, Dong X. Self-quenched ferrocenyl diketopyrrolopyrrole organic nanoparticles with amplifying photothermal effect for cancer therapy. Chem Sci. 2017;8(11):7457.

    CAS  Google Scholar 

  18. Hu W, Miao X, Tao H, Baev A, Ren C, Fan Q, He T, Huang W, Prasad PN. Manipulating nonradiative decay channel by intermolecular charge transfer for exceptionally improved photothermal conversion. ACS Nano. 2019;13(10):12006.

    CAS  Google Scholar 

  19. Chen H, Zhao Y. Applications of light-responsive systems for cancer theranostics. ACS Appl Mater Interfaces. 2018;10(25):21021.

    CAS  Google Scholar 

  20. Zou J, Zhu J, Yang Z, Li L, Fan W, He L, Tang W, Deng L, Mu J, Ma Y, Cheng Y, Huang W, Dong X, Chen X. A phototheranostic strategy to continuously deliver singlet oxygen in the dark and hypoxic tumor microenvironment. Angew Chem Int Ed. 2020;59(23):8833.

    CAS  Google Scholar 

  21. Zhao Z, Chen C, Wu W, Wang F, Du L, Zhang X, Xiong Y, He X, Cai Y, Kwok RTK, Lam JWY, Gao X, Sun P, Phillips DL, Ding D, Tang BZ. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat Commun. 2019;10(1):768.

    CAS  Google Scholar 

  22. Yang X, Liu G, Shi Y, Huang W, Shao J, Dong X. Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects. Nanotechnology. 2018;29(22):222001.

    Google Scholar 

  23. Cheng L, Wang X, Gong F, Liu T, Liu Z. 2D nanomaterials for cancer theranostic applications. Adv Mater. 2020;32(13):1902333.

    CAS  Google Scholar 

  24. Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces. 2017;9(46):40077.

    CAS  Google Scholar 

  25. Yang X, Wang D, Shi Y, Zou J, Zhao Q, Zhang Q, Huang W, Shao J, Xie X, Dong X. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces. 2018;10(15):12431.

    CAS  Google Scholar 

  26. Yang X, Yang M, Pang B, Vara M, Xia Y. Gold nanomaterials at work in biomedicine. Chem Rev. 2015;115(19):10410.

    CAS  Google Scholar 

  27. Qi J, Fang Y, Kwok RTK, Zhang X, Hu X, Lam JWY, Ding D, Tang BZ. Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice. ACS Nano. 2017;11(7):7177.

    CAS  Google Scholar 

  28. Qu H, Cui W, Li J, Shao J, Chi C. 6,13-dibromopentacene [2,3:9,10]-bis(dicarboximide): a versatile building block for stable pentacene derivatives. Org Lett. 2011;13(5):924.

    CAS  Google Scholar 

  29. Shao J, Wang G, Wang K, Yang C, Wang M. Direct arylation polycondensation for efficient synthesis of narrow-bandgap alternating D-A copolymers consisting of naphthalene diimide as an acceptor. Polym Chem. 2015;6(38):6836.

    CAS  Google Scholar 

  30. Li L, Shao C, Liu T, Chao Z, Chen H, Xiao F, He H, Wei Z, Zhu Y, Wang H, Zhang X, Wen Y, Yang B, He F, Tian L. An NIR-II-emissive photosensitizer for hypoxia-tolerant photodynamic theranostics. Adv Mater. 2020;32(45):2003471.

    CAS  Google Scholar 

  31. Cheng Z, Zhang T, Wang W, Shen Q, Hong Y, Shao J, Xie X, Fei Z, Dong X. D-A-D structured selenadiazolesbenzothiadiazole-based near-infrared dye for enhanced photoacoustic imaging and photothermal cancer therapy. Chin Chem Lett. 2021;32(4):1582.

    Google Scholar 

  32. Yin Z, Chen D, Zou J, Shao J, Tang H, Xu H, Si W, Dong X. Tumor microenvironment responsive oxygen-self-generating nanoplatform for dual-imaging guided photodynamic and photothermal therapy. ChemistrySelect. 2018;3:4366.

    CAS  Google Scholar 

  33. Wang D, Lee MMS, Xu W, Shan G, Zheng X, Kwok RTK, Lam JWY, Hu X, Tang BZ. Boosting non-radiative decay to do useful work: development of a multi-modality theranostic system from an AIEgen. Angew Chem Int Ed. 2019;58(17):5628.

    CAS  Google Scholar 

  34. Tang Q, Xiao W, Huang C, Si W, Shao J, Huang W, Chen P, Zhang Q, Dong X. pH-triggered and enhanced simultaneous photodynamic and photothermal therapy guided by photoacoustic and photothermal imaging. Chem Mater. 2017;29(12):5216.

    CAS  Google Scholar 

  35. Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev. 2018;5(2):269.

    CAS  Google Scholar 

  36. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2(7):17024.

    CAS  Google Scholar 

  37. Chen D, Qu X, Shao J, Wang W, Dong X. Anti-vascular nano agents: a promising approach for cancer treatment. J Mater Chem B. 2020;8(15):2990.

    CAS  Google Scholar 

  38. Xu Y, Mo R, Qi C, Ren Z, Jia X, Kan Z, Li C, Wang F. Dual-property blue and red emission carbon dots for Fe(III) ions detection and cellular imaging. Rare Met. 2021;40(7):1957.

    CAS  Google Scholar 

  39. Chen D, Tang Y, Zhu J, Zhang J, Song X, Wang W, Shao J, Huang W, Chen P, Dong X. Photothermal-pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. Biomaterials. 2019;221:119422.

    CAS  Google Scholar 

  40. Liang P, Huang X, Wang Y, Chen D, Ou C, Zhang Q, Shao J, Huang W, Dong X. Tumor-microenvironment-responsive nanoconjugate for synergistic antivascular activity and phototherapy. ACS Nano. 2018;12(11):11446.

    CAS  Google Scholar 

  41. Chen C, Tang Y, Ding D. Intramolecular motion-associated biomaterials for image-guided cancer surgery. Smart Mater Med. 2020;1:24.

    Google Scholar 

  42. Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B. 2019;7(5):709.

    CAS  Google Scholar 

  43. Tang Y, Xue L, Yu Q, Chen D, Cheng Z, Wang W, Shao J, Dong X. Smart Aza-BODIPY photosensitizer for tumor microenvironment-enhanced cancer phototherapy. ACS Appl Bio Mater. 2019;2(12):5888.

    CAS  Google Scholar 

  44. Wang Y, Zhou K, Huang G, Hensley C, Huang X, Ma X, Zhao T, Sumer BD, DeBerardinis RJ, Gao J. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater. 2014;13(2):204.

    CAS  Google Scholar 

  45. Horiuchi H, Kuribara R, Hirabara A, Okutsu T. pH-response optimization of amino-substituted tetraphenylporphyrin derivatives as pH-activatable photosensitizers. J Phys Chem A. 2016;120(28):5554.

    CAS  Google Scholar 

  46. Tian J, Ding L, Xu HJ, Shen Z, Ju H, Jia L, Bao L, Yu JS. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J Am Chem Soc. 2013;135(50):18850.

    CAS  Google Scholar 

  47. Shi N, Shi Y, Shao J, Yang X, Zhang X, Zhang Y, Warsame UF, Shao J, Dong X. Selenadiazolobenzotriazole based near infrared dyes with enhanced intramolecular charge transfer and photothermal effect: synthesis, characterization and photophysical properties. Dyes Pigm. 2019;160:683.

    CAS  Google Scholar 

  48. Zhang S, Guo W, Wei J, Li C, Liang XJ, Yin M. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy. ACS Nano. 2017;11(4):3797.

    CAS  Google Scholar 

  49. Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. A water-soluble, NIR-absorbing quaterrylenediimide chromophore for photoacoustic imaging and efficient photothermal cancer therapy. Angew Chem Int Ed. 2019;58(6):1638.

    CAS  Google Scholar 

  50. Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small molecular NIR-II fluorophores for cancer phototheranostics. The Innovation. 2021;2(1):100082.

  51. Shao J, Chang J, Dai G, Chi C. Pyromellitic diimide-based copolymers for ambipolar field-effect transistors: synthesis, characterization, and device applications. J Polym Sci, Part A: Polym Chem. 2014;52(17):2454.

    CAS  Google Scholar 

  52. Shao J, Chang J, Chi C. Linear and star-shaped pyrazine-containing acene dicarboximides with high electron-affinity. Org Biomol Chem. 2012;10(35):7045.

    CAS  Google Scholar 

  53. Wang Z, Peng Q, Huang X, Ma Q, Shen Q, Shao J. Linear acenaphthene-imide-fused pyrazinacene-quinone: synthesis and photophysical properties. Mater Technol. 2021. https://doi.org/10.1080/10667857.2020.1810925.

    Article  Google Scholar 

  54. Shao J, Guo X, Shi N, Zhang X, Liu S, Lin Z, Zhao B, Chang J, Shao J, Dong X. Acenaphthylene-imide based small molecules/TiO2 bilayer as electron-transporting layer for solution-processing efficient perovskite solar cells. Sci China Mater. 2019;62(4):497.

    CAS  Google Scholar 

  55. Wang Z, Peng Q, Huang X, Ma Q, Shao J, Shen Q. Recent progress of acenaphthylene-imide-fused polycyclic aromatic hydrocarbons: Synthesis and application. Dyes Pigm. 2021;185:108877.

    CAS  Google Scholar 

  56. Zhu W, Kang M, Wu Q, Zhang Z, Wu Y, Li C, Li K, Wang L, Wang D, Tang BZ. Zwitterionic AIEgens: rational molecular design for NIR-II fluorescence imaging-guided synergistic phototherapy. Adv Func Mater. 2020;2007026:2007026.

    Google Scholar 

  57. Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014;43(18):6570.

    CAS  Google Scholar 

  58. Qi J, Duan X, Liu W, Li Y, Cai Y, Lam JWY, Kwok RTK, Ding D, Tang BZ. Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials. 2020;248:120036.

    CAS  Google Scholar 

  59. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17.

    CAS  Google Scholar 

  60. Nishi T, Forgac M. The vacuolar (H+)-ATPases-nature’s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3(2):94.

    CAS  Google Scholar 

  61. Chen D, Tang Q, Zou J, Yang X, Huang W, Zhang Q, Shao J, Dong X. pH-responsive PEG-doxorubicin-encapsulated Aza-BODIPY nanotheranostic agent for imaging-guided synergistic cancer therapy. Adv Healthcare Mater. 2018;7(7):1701272.

    Google Scholar 

  62. Chen D, Yu Q, Huang X, Dai H, Luo T, Shao J, Chen P, Chen J, Huang W, Dong X. A highly-efficient type I photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small. 2020;16(23):2001059.

    CAS  Google Scholar 

  63. Smith BR, Gambhir SS. Nanomaterials for in vivo imaging. Chem Rev. 2017;117(3):901.

    CAS  Google Scholar 

  64. Xiao Y, An F, Chen J, Yu J, Tao W, Yu Z, Ting R, Lee C, Zhang X. The nanoassembly of an intrinsically cytotoxic near-infrared dye for multifunctionally synergistic theranostics. Small. 2019;15(38):1903121.

    Google Scholar 

  65. Song X, Zhang R, Liang C, Chen Q, Gong H, Liu Z. Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials. 2015;57:84.

    CAS  Google Scholar 

  66. Yang X, Yu Q, Yang N, Xue L, Shao J, Li B, Shao J, Dong X. Thieno[3,2-b]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. J Mater Chem B. 2019;7(15):2454.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Natural Science Foundation of Jiangsu Province (Nos. BK20200092 and BK20200710).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Hong Jiao or Jin-Jun Shao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, XY., Hong, Y., Cai, H. et al. Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Met. 41, 56–66 (2022). https://doi.org/10.1007/s12598-021-01795-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01795-0

Keywords

Navigation