Skip to main content
Log in

A facile and non-destructive quartz fiber shadow mask process for the sub-micrometer device fabrication on two-dimensional semiconductors

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphic Abstract

摘要

常规的电子和光电子器件制备工艺会对二维半导体的本征性质产生较大的改变。为了解决这一问题, 人们提出了一些干式器件制备方法, 如“转移电极接触”法和“阴影掩膜”法。然而, 能在亚微米尺度下兼具低成本、无损、高可靠性等优点的方法却鲜有报道。在此, 我们演示了一种使用超细石英纤维为阴影掩膜的器件制备技术。这项技术可以“全干式”地轻松制备出亚微米尺度的器件, 并且能保留二维半导体的本征特性。同时, 利用石英纤维与衬底之间的白光干涉, 可以对掩模效果进行原位评估, 提高器件制备的可靠性。此外, 该方法操作灵活, 可以在单个衬底甚至单个晶粒上制造多个器件。该技术为制备亚微米尺寸器件提供了一种简便、无损、可靠的替代方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J, Zhou Y, Huang S, Xu HQ, Cui Y, Hwang HY, Liu Z, Chen Y, Yan B, Peng H. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol. 2017;12(6):530.

    Article  CAS  Google Scholar 

  2. Bandurin DA, Tyurnina AV, Yu GL, Mishchenko A, Zolyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeitler U, Novoselov KS, Patane A, Eaves L, Grigorieva IV, Fal’ko VI, Geim AK, Cao Y. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol. 2017;12(3):223.

    Article  CAS  Google Scholar 

  3. Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau SP, Zhou W, Liu Z, Wang X, Ji W, Chai Y. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater. 2017;29(5):1604230.

    Article  Google Scholar 

  4. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9(5):372.

    Article  CAS  Google Scholar 

  5. Li L, Kim J, Jin C, Ye GJ, Qiu DY, da Jornada FH, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie SG, Chen XH, Zhang Y, Wang F. Direct observation of the layer-dependent electronic structure in phosphorene. Nat Nanotechnol. 2017;12(1):21.

    Article  Google Scholar 

  6. Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite AD, Ajayan PM. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano. 2014;8(2):1263.

    Article  CAS  Google Scholar 

  7. Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim YJ, Gorbachev RV, Georgiou T, Morozov SV, Grigorenko AN, Geim AK, Casiraghi C, Castro Neto AH, Novoselov KS. Strong light-matter interactions in heterostructures of atomically thin films. Science. 2013;340(6138):1311.

    Article  CAS  Google Scholar 

  8. Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D, Zhai T. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv Mater. 2015;27(48):8035.

    Article  CAS  Google Scholar 

  9. Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo JC, Miyamoto Y, Geohegan DB, Xiao K. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013;13(4):1649.

    Article  CAS  Google Scholar 

  10. Lee CH, Lee GH, van der Zande AM, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz TF, Guo J, Hone J, Kim P. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat Nanotechnol. 2014;9(9):676.

    Article  CAS  Google Scholar 

  11. He B, Ren YX, Dai TJ, Hou S, Liu XZ. Characterization and performance of graphene-PbSe thin film heterojunction. Rare Met. 2021;40(1):219.

    Article  Google Scholar 

  12. Wang P, Liu S, Luo W, Fang H, Gong F, Guo N, Chen ZG, Zou J, Huang Y, Zhou X, Wang J, Chen X, Lu W, Xiu F, Hu W. Arrayed Van Der Waals broadband detectors for dual-band detection. Adv Mater. 2017;29(16):16014439.

    Google Scholar 

  13. Liu Y, Guo J, Zhu E, Liao L, Lee SJ, Ding M, Shakir I, Gambin V, Huang Y, Duan X. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature. 2018;557(7707):696.

    Article  CAS  Google Scholar 

  14. Jung Y, Choi MS, Nipane A, Borah A, Kim B, Zangiabadi A, Taniguchis T, Watanabe K, Yoo WJ, Hone J, Teherani JT. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat Electron. 2019;2(5):187.

    Article  Google Scholar 

  15. Telford EJ, Benyamini A, Rhodes D, Wang D, Jung Y, Zangiabadi A, Watanabe K, Taniguchi T, Jia S, Barmak K, Pasupathy AN, Dean CR, Hone J. Via method for lithography free contact and preservation of 2D materials. Nano Lett. 2018;18(2):1416.

    Article  CAS  Google Scholar 

  16. Went CM, Wong J, Jahelka PR, Kelzenberg M, Biswas S, Hunt MS, Carbone A, Atwater HA. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci Adv. 2019;5(12):eaax6061.

    Article  CAS  Google Scholar 

  17. Li YT, Huang L, Zhong MZ, Wei ZM, Li JB. An efficient and low-cost photolithographic-pattern-transfer technique to fabricate electrode arrays for micro-/nanoelectronics. Adv Mater Technol. 2016;1(1):1600001.

    Article  Google Scholar 

  18. Zhang HM, Guo XJ, Niu W, Xu H, Wu QJ, Liao FY, Chen J, Tang HW, Liu HQ, Xu ZH, Sun ZZ, Qiu ZJ, Pu Y, Bao WZ. Multilayer Si shadow mask processing of wafer-scale MoS2 devices. 2D Materials. 2020;7(2):025019.

    Article  CAS  Google Scholar 

  19. Song X, Zan W, Xu H, Ding S, Zhou P, Bao W, Zhang DW. A novel synthesis method for large-area MoS2 film with improved electrical contact. 2D Materials. 2017;4(2):025051.

    Article  Google Scholar 

  20. Alruqi A, Zhao R, Jasinski J, Sumanasekera G. Graphene-WS2 heterostructures by a lithography free method: their electrical properties. Nanotechnology. 2019;30(27):275704.

    Article  CAS  Google Scholar 

  21. Feng W, Zheng W, Cao W, Hu P. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv Mater. 2014;26(38):6587.

    Article  CAS  Google Scholar 

  22. Wang Z, Safdar M, Mirza M, Xu K, Wang Q, Huang Y, Wang F, Zhan X, He J. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale. 2015;7(16):7252.

    Article  CAS  Google Scholar 

  23. Hu PG, Zhang J, Yoon MN, Qiao XF, Zhang X, Feng W, Tan PH, Zheng W, Liu JJ, Wang XN, Idrobo JC, Geohegan DB, Xiao K. Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Res. 2014;7(5):694.

    Article  CAS  Google Scholar 

  24. Cheng R, Wen Y, Yin L, Wang F, Wang F, Liu K, Shifa TA, Li J, Jiang C, Wang Z, He J. Ultrathin single-crystalline CdTe nanosheets realized via Van der Waals epitaxy. Adv Mater. 2017;29(35):1703122.

    Article  Google Scholar 

  25. Tang Q, Li H, Liu Y, Hu W. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. J Am Chem Soc. 2006;128(45):14634.

    Article  CAS  Google Scholar 

  26. Tang Q, Li H, He M, Hu W, Liu C, Chen K, Wang C, Liu Y, Zhu D. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv Mater. 2006;18(1):65.

    Article  CAS  Google Scholar 

  27. Sun Y, Luo S, Zhao XG, Biswas K, Li SL, Zhang L. InSe: a two-dimensional material with strong interlayer coupling. Nanoscale. 2018;10(17):7991.

    Article  CAS  Google Scholar 

  28. Puretzky AA, Oyedele AD, Xiao K, Haglund AV, Sumpter BG, Mandrus D, Geohegan DB, Liang L. Anomalous interlayer vibrations in strongly coupled layered PdSe2. Materials. 2018;5(3):035016.

    Google Scholar 

  29. Qiao XF, Wu JB, Zhou L, Qiao J, Shi W, Chen T, Zhang X, Zhang J, Ji W, Tan PH. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale. 2016;8(15):8324.

    Article  CAS  Google Scholar 

  30. Sze SM, Ng KK. Metal-semiconductor contacts. In: Physics of semiconductor devices. 3rd ed. Hoboken: Wiley;2006. 134.

  31. Kim C, Moon I, Lee D, Choi MS, Ahmed F, Nam S, Cho Y, Shin HJ, Park S, Yoo WJ. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano. 2017;11(2):1588.

    Article  CAS  Google Scholar 

  32. Huang L, Tao L, Gong K, Li YT, Dong HF, Wei ZM, Li JB. Role of defects in enhanced Fermi level pinning at interfaces between metals and transition metal dichalcogenides. Phys Rev B. 2017;96(20):205303.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61734006, 61835011 and 61991430) and the National Basic Research Program of China (Nos. 2018YFA0209100 and 2020YFB0408400). The authors would like to thank Ping Liang and Ying Hu from the Institute of Semiconductors Chinese Academy of Sciences for their help in device processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Qiang Zhai.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LA., Zhao, FY., Zhai, SQ. et al. A facile and non-destructive quartz fiber shadow mask process for the sub-micrometer device fabrication on two-dimensional semiconductors. Rare Met. 41, 319–324 (2022). https://doi.org/10.1007/s12598-021-01787-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01787-0

Navigation