Skip to main content
Log in

Polydopamine modified CuS@HKUST for rapid sterilization through enhanced photothermal property and photocatalytic ability

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Because of the impressive evolution of the drug-resistant bacteria, the development of efficient, antibiotic-free agent is in great urgency. Herein, an efficient antibacterial agent, CuS@HKUST-polydopamine (PDA), was exquisitely designed, where the Cu-based metal-organic framework (MOF)—HKUST nanoparticles served as the porous frame, and the CuS was synthesized within the structure of the MOF through the process of in situ sulfuration, followed with polydopamine (PDA) covering the nanoparticles. The structure of the HKUST preventing the aggregation of the CuS nanoparticles, which improved their photothermal and photocatalytic properties. After covering with PDA, the nanoparticles’ abilities to produce heat and free radicals were further enhanced. This was because that the PDA itself could transform light into heat, which not only benefited the photothermal property, but also improved the photocatalytic property of the nanoparticles by accelerating the charge mobility. Moreover, the PDA could also transfer the photo-induced electrons fast and thus prevented the recombination of the photo-generated electron–hole pairs, which resulted in the enhanced ability to produce free radicals. As a result, under light irradiation, the antibacterial efficiency of the CuS@HKUST-PDA against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) could reach 99.77% and 99.57%. Hence, the synthesized CuS@HKUST-PDA can be promising for anti-infection and sterilization application without using antibiotics.

Graphical abstract

摘要

由于耐药菌的飞速进化, 研发有效的, 非抗生素类的抗菌剂迫在眉睫。本文设计了一种高效的抗菌剂——CuS@HKUST-聚多巴胺(PDA)。这种复合材料使用铜基金属-有机框架结构 (MOF)——HKUST作为多孔框架, 通过原位硫化的方法在HKUST颗粒中原位生成CuS纳米颗粒, 并使用聚多巴胺 (PDA) 包覆纳米颗粒。HKUST的多孔结构可以有效防止CuS纳米颗粒之间的团聚, 并避免由此导致的光热转换效率降低。当纳米颗粒表面包裹一层PDA后, 复合纳米颗粒在光照下产生热量和自由基的能力均会明显增强。这主要是由以下几方面原因造成的: 首先, PDA自身可以将光转换为热量, 提高复合材料的光热转换能力; 同时高热也可以提高电子的流动性, 进而增强复合纳米材料的光动力性能。此外, PDA可以快速转移光致电子,阻碍电子-空穴的复合, 进一步提高纳米颗粒在光照下产生自由基的能力。在光照下, CuS@HKUST-PDA对金黄色葡萄球菌和大肠杆菌的抗菌率分别可以达到99.77%和99.57%。因此, CuS@HKUST-PDA纳米颗粒作为非抗生素类抗菌剂在抗感染和食品杀菌等方面有较大的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu X, Li X, Shan Y, Yin Y, Liu C, Lin Z, Kumar SS. CuS nanoparticles anchored to g-C3N4 nanosheets for photothermal ablation of bacteria. RSC Adv. 2020;10(21):12183.

    Article  CAS  Google Scholar 

  2. Farrow C, McBean E, Huang G, Yang AL, Wu YC, Liu Z, Dai ZN, Cawte T, Li YP. Ceramic water filters: a point-of-use water treatment technology to remove bacteria from drinking water in Longhai city, Fujian province, China. J Environ Inform. 2018;32(2):63.

    Google Scholar 

  3. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336.

    Article  CAS  Google Scholar 

  4. Theuretzbacher U, Outterson K, Engel A, Karlen A. The global preclinical antibacterial pipeline. Nat Rev Microbiol. 2020;18(5):275.

    Article  Google Scholar 

  5. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12 Suppl):S122.

    Article  CAS  Google Scholar 

  6. Dai B, Yu Y, Chen Y, Huang H, Lu C, Kou J, Zhao Y, Xu Z. Construction of self-healing internal electric field for sustainably enhanced photocatalysis. Adv Funct Mater. 2019;29(16):1807934.

    Article  Google Scholar 

  7. Gao L, Cui X, Wang Z, Sewell C, Li Z, Liang S, Zhang M, Li J, Hu Y, Lin Z. Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution. PNAS. 2021;118(7):e2023421118.

    Article  CAS  Google Scholar 

  8. Lin Y, Han D, Li Y, Tan L, Liu X, Cui Z, Yang X, Li Z, Liang Y, Zhu S, Wu S. Ag2S@WS2 heterostructure for rapid bacteria-killing using near-infrared light. ACS Sustainable Chem Eng. 2019;7(17):14982.

    Article  CAS  Google Scholar 

  9. Ren Y, Liu H, Liu X, Zheng Y, Li Z, Li C, Yeung K, Zhu S, Liang Y, Cui Z, Wu S. Photoresponsive materials for antibacterial applications. Cell Rep Phys Sci. 2020;1(11):100245.

    Article  Google Scholar 

  10. Han D, Li Y, Liu X, Li B, Han Y, Zheng Y, Yeung KWK, Li C, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chem Eng J. 2020;396:125194.

    Article  CAS  Google Scholar 

  11. Ding H, Han D, Han Y, Liang Y, Liu X, Li Z, Zhu S, Wu S. Visible light responsive CuS/ protonated g-C3N4 heterostructure for rapid sterilization. J Hazard Mater. 2020;393:122423.

    Article  CAS  Google Scholar 

  12. Li Y, Liu X, Tan L, Cui Z, Yang X, Zheng Y, Yeung KWK, Chu PK, Wu S. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv Funct Mater. 2018;28(30):1800299.

    Article  Google Scholar 

  13. Zhao Y, Liu J, Han M, Yang G, Ma L, Wang Y. Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Mater Rare Met. 2021;40(2):499.

    Article  CAS  Google Scholar 

  14. Li Y, Yang Y, Huang J, Wang L, She H, Zhong J, Wang Q. Preparation of CuS/BiVO4 thin film and its efficaciously photoelectrochemical performance in hydrogen generation. Rare Met. 2019;38(5):428.

    Article  CAS  Google Scholar 

  15. Yu P, Han Y, Han D, Liu X, Liang Y, Li Z, Zhu S, Wu S. In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization. J Hazard Mater. 2020;390:122126.

    Article  CAS  Google Scholar 

  16. Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F, Wang L. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta. 2015;856:90.

    Article  CAS  Google Scholar 

  17. Yu S, Li G, Liu R, Ma D, Xue W. Dendritic Fe3O4@poly(dopamine)@PAMAM nanocomposite as controllable NO-releasing material: a synergistic photothermal and NO antibacterial study. Adv Funct Mater. 2018;28(20):1707440.

    Article  Google Scholar 

  18. Kim Y, Coy E, Kim H, Mrowczynski R, Torruella P, Jeong D, Choi KS, Jang JH, Song MY, Jang D, Peiro F, Jurga S, Kim HJ. Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface. Appl Catal B. 2021;280:119423.

    Article  CAS  Google Scholar 

  19. Han D, Ma M, Han Y, Cui Z, Liang Y, Liu X, Li Z, Zhu S, Wu S. Eco-friendly hybrids of carbon quantum dots modified MoS2 for rapid microbial inactivation by strengthened photocatalysis. ACS Sustainable Chem Eng. 2019;8(1):534.

    Article  Google Scholar 

  20. Tian N, Gao Y, Wu J, Luo S, Dai W. Water-resistant HKUST-1 functionalized with polydimethylsiloxane for efficient rubidium ion capture. New J Chem. 2019;43(39):15539.

    Article  CAS  Google Scholar 

  21. Wang C, Qian X, An X. In situ green preparation and antibacterial activity of copper-based metal-organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose. 2015;22(6):3789.

    Article  CAS  Google Scholar 

  22. Mosleh S, Rahimi MR, Ghaedi M, Dashtian K, Hajati S. Photocatalytic degradation of binary mixture of toxic dyes by HKUST-1 MOF and HKUST-1-SBA-15 in a rotating packed bed reactor under blue LED illumination: central composite design optimization. RSC Adv. 2016;6(21):17204.

    Article  CAS  Google Scholar 

  23. Gupta VK, Pathania D, Agarwal S, Singh P. Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. J Hazard Mater. 2012;243:179.

    Article  CAS  Google Scholar 

  24. Han D, Li Y, Liu X, Yeung KWK, Zheng Y, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds. J Mater Sci Technol. 2021;62:83.

    Article  Google Scholar 

  25. Feng M, Yu S, Wu P, Wang Z, Liu S, Fu J. Rapid, high-efficient and selective removal of cationic dyes from wastewater using hollow polydopamine microcapsules: isotherm, kinetics, thermodynamics and mechanism. Appl Surf Sci. 2021;542:148633.

    Article  CAS  Google Scholar 

  26. Cui X, Sun X, Liu L, Huang Q, Yang H, Chen C, Nie S, Zhao Z, Zhao Z. In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chem Eng J. 2019;369:898.

    Article  CAS  Google Scholar 

  27. Song C, Wang X, Zhang J, Chen X, Li C. Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light. Appl Surf Sci. 2017;425:788.

    Article  CAS  Google Scholar 

  28. Qin Y, Kong X, Lei D, Lei X. Facial grinding method for synthesis of high-purity CuS nanosheets. Ind Eng Chem Res. 2018;57(8):2759.

    Article  CAS  Google Scholar 

  29. Álvarez JR, Sánchez-González E, Pérez E, Schneider-Revueltas E, Martínez A, Tejeda-Cruz A, Islas-Jácome A, González-Zamora E, Ibarra IA. Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. Dalton Trans. 2017;46(28):9192.

    Article  Google Scholar 

  30. Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057.

    Article  CAS  Google Scholar 

  31. Li L, Rashidi LH, Yao M, Ma L, Chen L, Zhang J, Zhang Y, Chen W. CuS nanoagents for photodynamic and photothermal therapies: phenomena and possible mechanisms. Photodiagn Photodyn Ther. 2017;19:5.

    Article  CAS  Google Scholar 

  32. Li M, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung K, Chu PK, Wu S. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomater Sci. 2018;6(8):2110.

    Article  CAS  Google Scholar 

  33. Ding X, Liu J, Li J, Wang F, Wang Y, Song S, Zhang H. Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem Sci. 2016;7(11):6695.

    Article  CAS  Google Scholar 

  34. Chen Y, Ai K, Liu J, Ren X, Jiang C, Lu L. Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials. 2016;77:198.

    Article  CAS  Google Scholar 

  35. Zou Y, Wu T, Li N, Guo X, Li Y. Photothermal-enhanced synthetic melanin inks for near-infrared imaging. Polymer. 2020;186:122042.

    Article  CAS  Google Scholar 

  36. Tian Y, Zhang J, Tang S, Zhou L, Yang W. Polypyrrole composite nanoparticles with morphology-dependent photothermal effect and immunological responses. Small. 2016;12(6):721.

    Article  CAS  Google Scholar 

  37. Hou L, Shan X, Hao L, Feng Q, Zhang Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater. 2017;54:307.

    Article  CAS  Google Scholar 

  38. Xu W, Zhu S, Liang Y, Li Z, Cui Z, Yang X, Inoue A. Nanoporous CuS with excellent photocatalytic property. Sci Rep. 2015;5(1):1.

    Article  Google Scholar 

  39. Hou L, Zhang M, Guan Z, Li Q, Yang J. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution. Appl Surf Sci. 2018;428:640.

    Article  CAS  Google Scholar 

  40. Sun X, Yan L, Xu R, Xu M, Zhu Y. Surface modification of TiO2 with polydopamine and its effect on photocatalytic degradation mechanism. Colloids Surf A. 2019;570:199.

    Article  CAS  Google Scholar 

  41. Zhang C, Yang H, Wan L, Liang H, Li H, Xu Z. Polydopamine-coated porous substrates as a platform for mineralized β-FeOOH nanorods with photocatalysis under sunlight. ACS Appl Mater Interfaces. 2015;7(21):11567.

    Article  CAS  Google Scholar 

  42. Huo R, Yang X, Yang J, Yang S, Xu Y. Self-assembly synthesis of BiVO4/polydopamine/g-C3N4 with enhanced visible light photocatalytic performance. Mater Res Bull. 2018;98:225.

    Article  CAS  Google Scholar 

  43. Wang X, He Y, Hu Y, Jin G, Jiang B, Huang Y. Photothermal-conversion-enhanced photocatalytic activity of flower-like CuS superparticles under solar light irradiation. Sol Energy. 2018;170:586.

    Article  CAS  Google Scholar 

  44. Dai B, Fang J, Yu Y, Sun M, Huang H, Lu C, Kou J, Zhao Y, Xu Z. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv Mater. 2020;32(12):1906361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Jilin Provincial Science and Technology Project (No. YDZJ202101ZYTS054), the National Science Fund for Distinguished Young Scholars (No. 51925104) and the National Natural Science Foundation of China (No. 51871162).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Lin Han, Xiang-Mei Liu or Shui-Lin Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, DL., Yu, PL., Liu, XM. et al. Polydopamine modified CuS@HKUST for rapid sterilization through enhanced photothermal property and photocatalytic ability. Rare Met. 41, 663–672 (2022). https://doi.org/10.1007/s12598-021-01786-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01786-1

Keywords

Navigation