Skip to main content

Advertisement

Log in

Hierarchical porous NiO as a noble-metal-free cocatalyst for enhanced photocatalytic H2 production of nitrogen-deficient g-C3N4

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride with nitrogen vacancies (NV-g-C3N4) as a photocatalyst has been studied in solar-driven energy conversion. However, expensive and rare noble metal co-catalysts such as Pt or Pd are required in the photocatalytic H2 evolution. Consequently, the exploration of low-cost and high-performance co-catalysts to replace expensive and rare noble metals has received more and more attention. Herein, a novel hierarchical porous NiO anchored on NV-g-C3N4 is successfully fabricated. The NV-g-C3N4/NiO photocatalysts exhibited outstanding H2 evolution rate under visible light irradiation in absence of noble metal co-catalysts. The optimized NV-g-C3N4/NiO (the mass ratio of NiO is ~ 1.7%) achieved a maximum H2 evolution rate of 170.60 μmol·g−1·h−1, exhibiting ∼ 8.3-fold enhancement as compared to that of NV-g-C3N4. NiO as co-catalyst provided more active sites for photocatalytic H2 evolution. Moreover, on the interface of NV-g-C3N4/NiO, an interface electric field is formed between NiO and host nitrogen-vacated g-C3N4, facilitating the transfer of the photogenerated electrons from NV-g-C3N4 to NiO co-catalyst, resulting in significantly promoted migration and separation efficiency of the photogenerated charge carriers.

Graphical abstract

摘要

氮空位石墨相氮化碳 (NV-g-C3N4) 光催化剂由于可以利用太阳光进行能量转换, 因而受到广泛的研究. 然而, 在光催化制氢过程中, Pt和Pd等价格昂贵的贵金属助催化剂必不可少. 因此, 探索出价格低廉且性能优异的助催化剂来取代贵金属迫在眉睫. 在本文中, 我们成功制备了一种新型分级多孔NiO修饰NV-g-C3N4的NV-g-C3N4/NiO复合光催化剂. 实验结果表明, 在不借助贵金属助催化剂的情况, NV-g-C3N4/NiO光催化剂表现出增强的可见光光催化制氢性能. 当NiO的质量分率约为1.7%时, NV-g-C3N4/NiO具有最好的制氢活性, 制氢速率为170.60·μmol·g-1·h-1, 是NV-g-C3N4的8.3倍. 这可能归因于分级多孔NiO助催化剂在光催化制氢反应过程中提供了更多的活性位点. 同时, 在NiO和NV-g-C3N4界面形成的内建电场促使光生电子从NV-g-C3N4的导带转移至NiO的表面, 导致光生载流子的迁移和分离效率显著提升.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen GZ, Chen KJ, Fu JW, Liu M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Met. 2020;39(6):607.

    Article  CAS  Google Scholar 

  2. Cheng TT, Sun XF, Xian T, Yi Z, Li RS, Wang XX, Yang H. Tert-butylamine/oleic acid-assisted morphology tailoring of hierarchical Bi4Ti3O12 architectures and their application for photodegradation of simulated dye wastewater. Opt Mater. 2021;112:110781.

    Article  CAS  Google Scholar 

  3. Liu G, Wang GH, Hu ZH, Su YR, Zhao L. Ag2O nanoparticles decorated TiO2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Appl Surf Sci. 2019;465:902.

    Article  CAS  Google Scholar 

  4. Zhao HY, Liu Q, Wang XX, Huo JR, Li L, Qian P, Su YJ. First-principles calculation of Aun@(ZnS)42 (n = 6–16) hetero-nanostructure system. Rare Met. 2020;39(10):1165.

    Article  CAS  Google Scholar 

  5. Lu LY, Wang GH, Xiong ZW, Hu ZF, Liao YW, Wang J, Li J. Enhanced photocatalytic activity under visible light by the synergistic effects of plasmonics and Ti3+-doping at the Ag/TiO2-x heterojunction. Ceram Int. 2020;46(8):10667.

    Article  CAS  Google Scholar 

  6. Mei ZH, Wang GH, Yan SD, Wang J. Rapid microwave-assisted synthesis of 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution. Acta Phys-Chim Sin. 2021;37(6):2009097.

    Google Scholar 

  7. Wu XH, Gao DD, Wang P, Yu HG, Yu JG. NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon. 2019;153:757.

    Article  CAS  Google Scholar 

  8. Pan ZM, Zhang GG, Wang XC. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: all-solid-state Z-scheme system for photocatalytic overall water splitting. Angew Chem Int Ed. 2019;131(21):7102.

    Article  Google Scholar 

  9. Niu P, Liu G, Cheng HM. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J Phys Chem C. 2012;116(20):11013.

    Article  CAS  Google Scholar 

  10. Hong ZH, Shen B, Chen YL, Lin BZ, Gao BF. Enhancement of photocatalytic H2 evolution over nitrogen-deficient graphitic carbon nitride. J Mater Chem A. 2013;1(38):11754.

    Article  CAS  Google Scholar 

  11. Li XH, Zhang J, Zhou F, Zhang HL, Bai J, Wang YJ, Wang HY. Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment. Chin J Catal. 2018;39(6):1090.

    Article  CAS  Google Scholar 

  12. Wang K, Jiang LS, Wu XY, Zhang GK. Vacancy mediated Z-scheme charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. J Mater Chem A. 2020;8(26):13241.

    Article  CAS  Google Scholar 

  13. Li JM, Zhao L, Wang SM, Li J, Wang GH, Wang J. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl Surf Sci. 2020;515(15):145922.

    Article  CAS  Google Scholar 

  14. Li J, Wang S, Sun G, Gao H, Yu X, Tang S, Zhao X, Yi Z, Wang Y, Wei Y. Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Mater Today Chem. 2021;19:100390.

    Article  CAS  Google Scholar 

  15. Zhao GX, Sun YB, Zhou W, Wang XK, Chang K, Liu GG, Liu HM, Kako T, Ye JH. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfde semiconductor. Adv Mater. 2017;29(40):1703258.

    Article  Google Scholar 

  16. Zhong W, Wu XH, Liu YP, Wang XF, Fan JJ, Yu HG. Simultaneous realization of sulfur-rich surface and amorphous nanocluster of NiS1+x cocatalyst for efficient photocatalytic H2 evolution. Appl Catal B. 2021;280:119455.

    Article  CAS  Google Scholar 

  17. Mao ZY, Chen JJ, Yang YF, Wang DJ, Bie LJ, Fahlman BD. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces. 2017;9(14):12427.

    Article  CAS  Google Scholar 

  18. Xu Y, Cao Q, Yi Z, Wu PH, Cai SS. Adjusting the energy bands of WO3@ZnO nanocomposite heterojunction through the combination of WO3 thin film to improve its photoelectric performance. IEEE Access. 2020;8:171350.

    Article  Google Scholar 

  19. Yosefi L, Haghighia M. Fabrication of nanostructured flowerlike p-BiOI/p-NiO heterostructure and its efficient photocatalytic performance in water treatment under visible-light irradiation. Appl Catal B. 2018;220:367.

    Article  CAS  Google Scholar 

  20. Zhu XB, Luo B, Butburee T, Zhu JW, Han S, Wang LZ. Hierarchical macro/mesoporous NiO as stable and fast-charging anode materials for lithium-ion batteries. Microporous Mesoporous Mater. 2017;238:78.

    Article  CAS  Google Scholar 

  21. Hu XC, Wang GH, Wang J, Hu ZF, Su YR. Step-scheme NiO/BiOI heterojunction photocatalyst for rhodamine photodegradation. Appl Surf Sci. 2020;511:145499.

    Article  CAS  Google Scholar 

  22. Liao YW, Wang GH, Wang J, Wang K, Yan SD, Su YR. Nitrogen vacancy induced in situ g-C3N4 homojunction for boosting visible light-driven hydrogen evolution. J Colloid Inter Sci. 2021;587:110.

    Article  CAS  Google Scholar 

  23. Wang P, Cao YJ, Xu SQ, Yu HG. Boosting the H2-evolution performance of TiO2/Au photocatalyst by the facile addition of thiourea molecules. Appl Surf Sci. 2020;532:147420.

    Article  CAS  Google Scholar 

  24. Cao YJ, Wang P, Fan JJ, Yu HG. Covalently functionalized graphene by thiourea for enhancing H2-evolution performance of TiO2 photocatalyst. Ceram Int. 2021;47(1):654.

    Article  CAS  Google Scholar 

  25. Gao DD, Liu WJ, Xu Y, Wang P, Fan JJ, Yu HG. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity. Appl Catal B. 2020;260:118190.

    Article  CAS  Google Scholar 

  26. Fu JW, Xu QL, Low JX, Jiang CJ, Yu JG. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B. 2019;243:556.

    Article  CAS  Google Scholar 

  27. Fu YJ, Liu CA, Zhu C, Wang HB, Dou YJ, Shi WL, Shao MW, Huang H, Liu Y, Kang ZH. High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting. Inorg Chem Front. 2018;5(7):1646.

    Article  CAS  Google Scholar 

  28. Wang M, Cheng JJ, Wang XF, Hong XK, Fan JJ, Yu HG. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin J Catal. 2021;42(1):37.

    Article  CAS  Google Scholar 

  29. Gao HJ, Zhao XX, Zhang HM, Chen JF, Wang SF, Yang H. Construction of 2D/0D/2D face-to-face contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of Rhodamine B. J Electron Mater. 2020;49:5248.

    Article  CAS  Google Scholar 

  30. Kong LQ, Ji YJ, Dang ZZ, Yan JQ, Li P, Li YY, Liu SZ. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Adv Funct Mater. 2018;28(22):1800668.

    Article  Google Scholar 

  31. Yu HG, Ma HQ, Wu XH, Wang XF, Fan JJ, Yu JG. One-step realization of crystallization and cyano-group generation for g-C3N4 photocatalysts with improved H2 production. Sol RRL. 2020;5(2):2000372.

    Article  Google Scholar 

  32. Wu XH, Ma HQ, Zhong W, Fan JJ, Yu HG. Porous crystalline g-C3N4: bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl Catal B. 2020;271:118899.

    Article  CAS  Google Scholar 

  33. Sun YL, Jin D, Sun Y, Meng X, Gao Y, Dall’Agnese YH, Chen G, Wang XF. g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J Mater Chem A. 2018;6(19):9124.

    Article  CAS  Google Scholar 

  34. Chu JY, Han XJ, Yu Z, Du YC, Song B, Xu P. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures. ACS Appl Mater Interfaces. 2018;10(24):20404.

    Article  CAS  Google Scholar 

  35. Yang MQ, Dan JD, Pennycook SJ, Lu X, Zhu H, Xu QH, Fan HJ, Ho GW. Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Mater Horiz. 2017;4(5):885.

    Article  CAS  Google Scholar 

  36. Dong ZF, Wu Y, Thirugnanam N, Li GL. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production. Appl Surf Sci. 2018;430:293.

    Article  CAS  Google Scholar 

  37. Tang JY, Guo RT, Zhou WG, Huang CY, Pan WG. Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl Catal B. 2018;237:802.

    Article  CAS  Google Scholar 

  38. Elbanna O, Fujitsuka M, Majima T. g-C3N4/TiO2 mesocrystals composite for H2 evolution under visible-light irradiation and its charge carrier dynamics. ACS Appl Mater Interfaces. 2017;9(40):34844.

    Article  CAS  Google Scholar 

  39. Han CQ, Zhang RM, Ye YH, Wang L, Ma ZY, Su FY, Xie HQ, Zhou Y, Wong PK, Ye LQ. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J Mater Chem A. 2019;7(16):9726.

    Article  CAS  Google Scholar 

  40. Liu MJ, Xia PF, Zhang LY, Cheng B, Yu JG. Enhanced photocatalytic H2-production activity of g-C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst. ACS Sustain Chem Eng. 2018;6(8):10472.

    Article  CAS  Google Scholar 

  41. Yuan YJ, Yang Y, Li ZJ, Chen DQ, Wu ST, Fang GL, Bai WF, Ding MY, Yang LX, Cao DP, Yu ZT, Zou ZG. Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production. ACS Appl Energy Mater. 2018;1(4):1400.

    Article  CAS  Google Scholar 

  42. Wang J, Xia Y, Zhao HY, Wang GF, Xiang L, Xu JL, Komarneni S. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl Catal B. 2017;206:406.

    Article  CAS  Google Scholar 

  43. Yu HG, Xu JC, Gao DD, Fan JJ, Yu JG. Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Sci China Mater. 2020;63(11):2215.

    Article  CAS  Google Scholar 

  44. Liu JN, Jia QH, Long JL, Wang XX, Gao ZW, Gu Q. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Appl Catal B. 2018;222:35.

    Article  CAS  Google Scholar 

  45. Shifa TA, Wang FM, Cheng ZZ, He P, Liu Y, Jiang C, Wang ZX, He J. High crystal quality 2D manganese phosphorus trichalcogenide nanosheets and their photocatalytic activity. Adv Funct Mater. 2018;28(18):1800548.

    Article  Google Scholar 

  46. Han YY, Lu XL, Tang SF, Yin XP, Wei ZW, Lu TB. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv Energy Mater. 2018;8(16):1702992.

    Article  Google Scholar 

  47. Ye LQ, Ma ZY, Deng Y, Ye YH, Wang L, Kou MP, Xie HQ, Xu ZK, Zhou Y, Xia DH, Wong PK. Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy. Appl Catal B. 2019;257:117897.

    Article  CAS  Google Scholar 

  48. Ran JR, Zhang J, Yu JG, Jaroniecc M, Qiao SZ. Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting. Chem Soc Rev. 2014;43(22):7787.

    Article  CAS  Google Scholar 

  49. Yang JH, Wang DG, Han HX, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res. 2013;46(8):1900.

    Article  CAS  Google Scholar 

  50. Wang J, Wang GH, Jiang J, Wan Z, Su YR, Tang H. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci. 2020;564:32.

    Article  Google Scholar 

  51. Kong LG, Dong YM, Jiang PP, Wang GL, Zhang HZ, Zhao N. Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water. J Mater Chem A. 2016;25(4):9998.

    Article  Google Scholar 

  52. Wang J, Wang GH, Wang X, Wu Y, Su YR, Tang H. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution. Carbon. 2019;149:618.

    Article  CAS  Google Scholar 

  53. Vu MH, Sakar M, Nguyen CC, Do TO. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustainable Chem Eng. 2018;6(3):4194.

    Article  CAS  Google Scholar 

  54. Obregón S, Colón G. Improved H2 production of Pt-TiO2/g-C3N4-MnOx composites by an efficient handling of photogenerated charge pairs. Appl Catal B. 2014;144:775.

    Article  Google Scholar 

  55. Wang J, Wang GH, Cheng B, Yu JG, Fan JJ. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal. 2021;42(1):56.

    Article  CAS  Google Scholar 

  56. Yu HG, Yuan RR, Gao DD, Xu Y, Yu JG. Ethyl acetate-induced formation of amorphous MoSx nanoclusters for improved H2-evolution activity of TiO2 photocatalyst. Chem Eng J. 2019;375:121934.

    Article  CAS  Google Scholar 

  57. Shen RC, Xie J, Zhang HD, Zhang AP, Chen XB, Li X. Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy. ACS Sustain Chem Eng. 2018;6(1):816.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22075072 and 52003079) and Hubei Provincial Natural Science Foundation of China (No. 2019CFB568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YW., Yang, J., Wang, GH. et al. Hierarchical porous NiO as a noble-metal-free cocatalyst for enhanced photocatalytic H2 production of nitrogen-deficient g-C3N4. Rare Met. 41, 396–405 (2022). https://doi.org/10.1007/s12598-021-01784-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01784-3

Keywords

Navigation