Skip to main content

Advertisement

Log in

Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High entropy alloys (HEAs) containing five or more equimolar components have shown promising catalytic performance due to their unique chemical and mechanical properties. However, it is still challenging to prepare scalable and efficient nanoporous HEAs as catalysts. Here, we present a facile strategy to synthesize large-scale nanoporous HEAs particles by combing vacuum induction melting, gas atomization, and acidic etching procedure. The application of HEAs to energy conversion is evaluated with electrocatalytic oxygen evolution reaction (OER) on AlCrCuFeNi HEAs. The HEAs exhibit a low OER overpotential of 270 mV to achieve a current density of 10 mA·cm−2, a small Tafel slope of 77.5 mV·dec−1, and long-term stability for over 35 h in 1 mol·L−1 KOH, which is comparable to the state-of-the-art OER electrocatalyst RuO2. The findings in this paper not only provide an industrial approach to produce nanoporous HEAs powder but also inspire the applications of HEAs as catalysts.

Graphic abstract

摘要

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    Article  CAS  Google Scholar 

  2. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448.

    Article  CAS  Google Scholar 

  3. Li JY, Doubek G, McMillon-Brown L, Taylor AD. Recent advances in metallic glass nanostructures: synthesis strategies and electrocatalytic applications. Adv Mater. 2019;31(7):1802120.

    Article  Google Scholar 

  4. Lv ZY, Liu XJ, Jia B, Wang H, Wu Y, Lu ZP. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci Rep. 2016;6:34213.

    Article  CAS  Google Scholar 

  5. Yusenko KV, Riva S, Carvalho PA, Yusenko MV, Arnaboldi S, Sukhikh AS, Hanfland M, Gromilov SA. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scripta Mater. 2017;138:22.

    Article  CAS  Google Scholar 

  6. Xie P, Yao Y, Huang Z, Liu Z, Zhang J, Li T, Wang G, Shahbazian-Yassar R, Hu L, Wang C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat Commun. 2019;10(1):4011.

    Article  Google Scholar 

  7. Glasscott MW, Pendergast AD, Goines S, Bishop AR, Hoang AT, Renault C, Dick JE. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat Commun. 2019;10:2650.

    Article  Google Scholar 

  8. Jin Z, Lv J, Jia H, Liu W, Li H, Chen Z, Lin X, Xie G, Liu X, Sun S, Qiu HJ. Nanoporous Al–Ni–Co–Ir–Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small. 2019;15(47):e1904180.

    Article  Google Scholar 

  9. Zhang G, Ming K, Kang J, Huang Q, Zhang Z, Zheng X, Bi X. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2018;279:19.

    Article  CAS  Google Scholar 

  10. Huang AQ, He YZ, Zhou YZ, Zhou YY, Yang Y, Zhang JC, Luo L, Mao QM, Hou DM, Yang J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J Mater Sci. 2019;54(2):949.

    Article  CAS  Google Scholar 

  11. Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev. 2019;48(8):2366.

    Article  CAS  Google Scholar 

  12. Liang HY, Wei H, Pan D, Xu H. Chemically synthesized noble metal nanostructures for plasmonics. Nanotechnol REV. 2015;4(3):289.

    Article  Google Scholar 

  13. Liang HY, Yuan F, Johnston A, Gao C, Choubisa H, Gao Y, Wang YK, Sagar LK, Sun B, Li P, Bappi G, Chen B, Li J, Wang Y, Dong Y, Ma D, Gao Y, Liu Y, Yuan M, Saidaminov MI, Hoogland S, Lu ZH, Sargent EH. High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Adv Sci. 2020;7(8):1903213.

    Article  CAS  Google Scholar 

  14. Tong X, Liang HY, Liu Y, Tan L, Ma D, Zhao Y. Anisotropic optical properties of oriented silver nanorice and nanocarrots in stretched polymer films. Nanoscale. 2015;7(19):8858.

    Article  CAS  Google Scholar 

  15. Liang HY, Zhao HG, Li ZP, Harnagea C, Ma DL. Silver nanoparticle film induced photoluminescence enhancement of near-infrared emitting PbS and PbS/CdS core/shell quantum dots: observation of different enhancement mechanisms. Nanoscale. 2016;8(9):4882.

    Article  CAS  Google Scholar 

  16. Wang N, Miao RK, Lee G, Vomiero A, Sinton D, Ip AH, Liang HY, Sargent EH. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat. 2021. https://doi.org/10.1002/smm2.1018.

    Article  Google Scholar 

  17. Liang HY, Wei H, Xu HX. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures. Front Phys. 2016;11(2):117301.

    Article  Google Scholar 

  18. Torralba JM, Alvaredo P, Garcia-Junceda A. High-entropy alloys fabricated via powder metallurgy. A critical review. Powder Metall. 2019;62(2):84.

    Article  CAS  Google Scholar 

  19. Wu QF, Wang ZJ, He F, Wang LL, Luo J, Li JJ, Wang JC. High entropy alloys: from bulk metallic materials to nanoparticles. Metall Mater Trans A. 2018;49A(10):4986.

    Article  Google Scholar 

  20. Yao YG, Huang ZN, Xie PF, Lacey SD, Jacob RJ, Xie H, Chen FJ, Nie AM, Pu TC, Rehwoldt M, Yu DW, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu LB. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018;359(6383):1489.

    Article  CAS  Google Scholar 

  21. Niu B, Zhang F, Ping H, Li N, Zhou JY, Lei LW, Xie JJ, Zhang JY, Wang WM, Fu ZY. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci Rep. 2017;7(1):3421.

    Article  Google Scholar 

  22. Dai WJ, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J Power Sources. 2019;430:104.

    Article  CAS  Google Scholar 

  23. Cui XD, Zhang BL, Zeng CY, Guo SM. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. MRS Commun. 2018;8(3):1230.

    Article  CAS  Google Scholar 

  24. Waag F, Li Y, Ziefuss AR, Bertin E, Kamp M, Duppel V, Marzun G, Kienle L, Barcikowski S, Gokce B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019;9(32):18547.

    Article  CAS  Google Scholar 

  25. Qiu HJ, Fang G, Wen YR, Liu P, Xie GQ, Liu XJ, Sun SH. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J Mater Chem A. 2019;7(11):6499.

    Article  CAS  Google Scholar 

  26. Qiu HJ, Fang G, Gao JJ, Wen YR, Lv J, Li HL, Xie GQ, Liu XJ, Sun SH. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater Lett. 2019;1(5):526.

    Article  CAS  Google Scholar 

  27. Luo SC, Gao P, Yu HC, Yang JJ, Wang ZM, Zeng XY. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical behavior. J Alloys Compd. 2019;771:387.

    Article  CAS  Google Scholar 

  28. Han M, Wang N, Zhang B, Xia YJ, Li J, Han JR, Yao KL, Gao CC, He CN, Liu YC, Wang ZM, Seifitokaldani A, Sun XH, Liang HY. High-valent nickel promoted by atomically embedded copper for efficient water oxidation. ACS Catal. 2020;10(17):9725.

    Article  CAS  Google Scholar 

  29. Han M, Li SC, Li C, Wu J, Han JR, Wang N, Liu YC, Liang HY. Strain-modulated Ni3Al alloy promotes oxygen evolution reaction. J Alloys Compd. 2020;844:156094.

    Article  CAS  Google Scholar 

  30. Chen YZ, Jiang DJ, Gong ZQ, Li JY, Wang LN. Anodized metal oxide nanostructures for photoelectrochemical water splitting. Int J Min Met Mater. 2020;27(5):584.

    Article  CAS  Google Scholar 

  31. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2020;39(1):1.

    Article  Google Scholar 

  32. Wang ZY, Jiang SD, Duan CQ, Wang D, Luo SH, Liu YG. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Met. 2020;39(12):1383.

    Article  CAS  Google Scholar 

  33. Zhu M, Ge QF, Zhu XL. Catalytic reduction of CO2 to CO via reverse water gas shift reaction: recent advances in the design of active and selective supported metal catalysts. Trans Tianjin Univ. 2009;26(3):172.

    Article  Google Scholar 

  34. Yao KL, Xia YJ, Li J, Wang N, Han JR, Gao CC, Han M, Shen GQ, Liu YC, Seifitokaldani A, Sun XH, Liang HY. Metal-organic framework derived copper catalysts for CO2 to ethylene conversion. J Mater Chem A. 2020;8(22):11117.

    Article  CAS  Google Scholar 

  35. Bo X, Hocking RK, Zhou S, Li YB, Chen XJ, Zhuang JC, Du Y, Zhao C. Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energ Environ Sci. 2020;13(11):4225.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51771132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yan Liang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4263 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LH., Li, N., Han, M. et al. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 41, 125–131 (2022). https://doi.org/10.1007/s12598-021-01760-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01760-x

Keywords

Navigation