Skip to main content

Advertisement

Log in

Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 04 June 2021

This article has been updated

Abstract

Noble metal-based high-entropy alloy nanoparticles (NM-HEA NPs) have exhibited brilliant catalytic performance toward electrocatalytic energy conversion and attracted increasing attention. The near-equimolar mixed elements of NM-HEA NPs may result in the unique properties including cocktail effect, high entropy effect and lattice distortion effect, which are beneficial for improving the catalytic performance and reducing the amount of noble metal. Herein, several advanced NM-HEA NPs as electrocatalysts for energy conversion are systematically summarized. The preparation methods of NM-HEA NPs are evaluated as well as the catalytic properties and mechanism are discussed classified by electrocatalytic reactions. Finally, the challenges and prospects in this field are carefully discussed. This review provides an overview on recent advances of NM-HEA electrocatalysts for energy conversion and draws more attention in this infant research field.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Kim BH, Heo J, Kim S, Reboul CF, Chun H, Kang D, Bae H, Hyun H, Lim J, Lee H, Han B, Hyeon T, Alivisatos AP, Ercius P, Elmlund H, Park J. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science. 2020;368(6486):60.

    CAS  Google Scholar 

  2. Qin Y, Zhang W, Guo K, Liu X, Liu J, Liang X, Wang X, Gao D, Gan L, Zhu Y, Zhang Z, Hu W. Fine-tuning intrinsic strain in penta-twinned Pt–Cu–Mn nanoframes boosts oxygen reduction catalysis. Adv Funct Mater. 2020;30(11):1910107.

    CAS  Google Scholar 

  3. Nosheen F, Wasfi N, Aslam S, Tauseef A, Hussain S, Hussain N, Shah S, Shaheen N, Ashraf A, Zhu Y, Wang H, Ma J, Zhang Z, Hu W. Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale. 2020;12(7):42.

    Google Scholar 

  4. Liu H, Zhu Y, Ma J, Zhang Z, Hu W. Recent advances in Atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv Funct Mater. 2020;30(17):1910534.

    CAS  Google Scholar 

  5. Centi C. Smart catalytic materials for energy transition. SmartMat. 2020;1(1):e1005.

    Google Scholar 

  6. Wang C, Yang C, Zhang Z. Unraveling molecular-level mechanisms of reactive facet of carbon nitride single crystals photocatalyzing overall water splitting. Rare Met. 2020;39(12):1353.

    CAS  Google Scholar 

  7. Yang C, Nosheen F, Zhang Z. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01600-4.

    Article  Google Scholar 

  8. Liu M, Zhao Z, Duan X, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater. 2019;31(6):1802234.

    Google Scholar 

  9. Lei W, Xiao JL, Liu HP, Jia QL, Zhang HJ. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten. 2020;2(3):217.

    Google Scholar 

  10. Wang AL, Zhu L, Yun Q, Han S, Zeng L, Cao W, Meng X, Xia J, Lu Q. Bromide ions triggered synthesis of noble metal-based intermetallic nanocrystals. Small. 2020;16(40):2003782.

    CAS  Google Scholar 

  11. Wang Y, Li X, Zhang M, Zhou Y, Rao D, Zhong C, Zhang J, Han X, Hu W, Zhang Y, Zaghib K, Wang Y, Deng Y. Lattice-strain engineering of homogeneous NiS Se core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv Mater. 2020;32(40):2000231.

    CAS  Google Scholar 

  12. Jiang K, Zhao J, Wang H. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv Funct Mater. 2020;30(35):2003321.

    CAS  Google Scholar 

  13. Zhang Z, Luo Z, Chen B, Wei C, Zhao J, Chen J, Zhang X, Lai Z, Fan Z, Tan C, Zhao M, Lu Q, Li B, Zong Y, Yan C, Wang G, Xu ZJ, Zhang H. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv Mater. 2016;28(39):8712.

    CAS  Google Scholar 

  14. Qin Y, Zhang X, Dai X, Sun H, Yang Y, Li X, Shi Q, Gao D, Wang H, Yu N, Sun S. Graphene oxide-assisted synthesis of Pt-Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small. 2016;12(4):524.

    CAS  Google Scholar 

  15. Wang LP, Shen QX, Tian L, Yang N, Xie G, Li B. Preparation of PtCo composite nanowires and characterization of electrocatalytic performance for oxygen reduction reaction. Chin J Rare Met. 2019;43(4):367.

    Google Scholar 

  16. Liu S, Hu Z, Wu Y, Zhang J, Zhang Y, Cui B, Liu C, Hu S, Zhao N, Han X, Cao A, Chen Y, Deng Y, Hu W. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv Mater. 2020;32(48):2006034.

    CAS  Google Scholar 

  17. Cui X, Zhang Z, Gong Y, Saleem F, Chen B, Du Y, Lai Z, Yang N, Li B, Gu L, Zhang H. Defect-rich, candied Haws-shaped AuPtNi alloy nanostructures for highly efficient electrocatalysis. CCS Chem. 2020;2(1):24.

    CAS  Google Scholar 

  18. Tu K, Tranca D, Rodríguez-Hernández F, Jiang K, Huang S, Zheng Q, Chen MX, Lu C, Su Y, Chen Z, Mao H, Yang C, Jiang J, Liang HW, Zhuang X. A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv Mater. 2020;32(46):2005433.

    CAS  Google Scholar 

  19. Duan SB, Wang RM. Nanomaterials composed of noble metals and transition metal compounds: interface structure control and in-situ characterization at atomic scale. Chin J Rare Met. 2019;43(11):1179.

    Google Scholar 

  20. Yang C, Zhu Y, Liu J, Qin Y, Wang H, Liu H, Chen Y, Zhang Z, Hu W. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy. 2020;77:105126.

    CAS  Google Scholar 

  21. Zhang Z, Liu G, Cui X, Chen B, Zhu Y, Gong Y, Saleem F, Xi S, Du Y, Borgna A, Lai Z, Zhang Q, Li B, Zong Y, Han Y, Gu L, Zhang H. Crystal phase and architecture engineering of Lotus-Thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv Mater. 2018;30(30):1801741.

    Google Scholar 

  22. Chen Y, Cheng T, Goddard WA III. Atomistic explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt. J Am Chem Soc. 2020;142(19):8625.

    CAS  Google Scholar 

  23. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    CAS  Google Scholar 

  24. Pedersen J, Batchelor T, Bagger A, Rossmeisl J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020;10(3):2169.

    CAS  Google Scholar 

  25. Xin Y, Li S, Qian Y, Zhu W, Yuan H, Jiang P, Guo R, Wang L. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 2020;10(19):11280.

    CAS  Google Scholar 

  26. Yang T, Zhao YL, Tong Y, Jiao ZB, Wei J, Cai JX, Han XD, Chen D, Hu A, Kai JJ, Lu K, Liu Y, Liu CT. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362(6417):933.

    CAS  Google Scholar 

  27. Ma Y, Wang Q, Jiang B , Li C, Hao JM, Li X, Dong C, Nieh T. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions. Acta Mater. 2018;147:213.

    CAS  Google Scholar 

  28. Senkov O, Jensen J, Pilchak A, Miracle D, Fraser H. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMoNbTaTiZr. Mater Des. 2018;139:498.

  29. Liu SF, Wu Y, Wang HT, He JY, Liu JB, Chen CX, Liu XJ, Wang H, Lu ZP. Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics. 2018;93:269.

    CAS  Google Scholar 

  30. Fu Z, Jiang L, Wardini JL, MacDonald BE, Wen H, Xiong W, Zhang D, Zhou Y, Rupert TJ, Chen W, Lavernia EJ. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci Adv. 2018;4(10):8712.

    Google Scholar 

  31. Tomboc G, Kwon T, Joo J, Lee K. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J Mater Chem A. 2020;8(3):14844.

    CAS  Google Scholar 

  32. Luan HW, Shao Y, Li JF, Mao WL, Han ZD, Shao CL, Yao KF. Phase stabilities of high entropy alloys. Scr Mater. 2020;179:40.

    CAS  Google Scholar 

  33. Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater. 2018;61(1):2.

    CAS  Google Scholar 

  34. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448.

    CAS  Google Scholar 

  35. Zhang Y, Zuo T, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1.

    Google Scholar 

  36. Yeh JW. Alloy design strategies and future trends in High-entropy alloys. JOM. 2013;65(12):1759.

    CAS  Google Scholar 

  37. Wang L, Zeng Z, Gao W, Maxson T, Raciti D, Giroux M, Pan X, Wang C, Greeley J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science. 2019;363(6429):870.

    CAS  Google Scholar 

  38. Wang Y, Li X, Zhang M, Zhou Y, Rao D, Zhong C, Zhang J, Han X, Hu W, Zhang Y, Zaghib K, Wang Y, Deng Y. Lattice strain engineering of homogeneous NiS0.5Se0.5 core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv Mater. 2020;32(40):2000231.

    CAS  Google Scholar 

  39. Li J, Sharma S, Wei K, Chen Z, Morris D, Lin H, Zeng C, Chi M, Yin Z, Muzzio M, Shen M, Zhang P, Peterson AA, Sun S. Anisotropic strain tuning of L10Ternary nanoparticles for oxygen reduction. J Am Chem Soc. 2020;142(45):19209.

    CAS  Google Scholar 

  40. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem. 2010;2(6):454.

    CAS  Google Scholar 

  41. Luo M, Guo S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat Rev Mater. 2017;2(11):17059.

    CAS  Google Scholar 

  42. Xia Z, Guo S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev. 2019;48(12):3265.

    CAS  Google Scholar 

  43. Chang X, Zeng M, Liu K, Fu L. Phase engineering of High-entropy alloys. Adv Mater. 2020;32(14):1907226.

    CAS  Google Scholar 

  44. Zhao M, Xia Y. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat Rev Mater. 2020;5(6):440.

    CAS  Google Scholar 

  45. Liu W, Tong Y, Chen S, Xu W, Wu H, Zhao Y, Yang T, Wang X, Liu X, Kai J, Liu CT. Unveiling the electronic origin for pressure-induced phase transitions in high-entropy alloys. Matter. 2020;2(3):51.

    Google Scholar 

  46. Ge Y, Huang Z, Ling C, Chen B, Liu G, Zhou M, Liu J, Zhang X, Cheng H, Liu G, Du Y, Sun C, Tan C, Huang J, Yin P, Fan Z, Chen Y, Yang N, Zhang H. Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles. J Am Chem Soc. 2020;142(44):18971.

    CAS  Google Scholar 

  47. Yun Q, Lu Q, Li C, Chen B, Zhang Q, He Q, Hu Z, Zhang Z, Ge Y, Yang N, Ge J, He Y, Gu L, Zhang H. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano. 2019;13(12):14329.

    CAS  Google Scholar 

  48. Dwivedi A, Koch CC, Rajulapati KV. On the single phase fcc solid solution in nanocrystalline Cr-Nb-Ti-V-Zn high-entropy alloy. Mater Lett. 2016;183:44.

    CAS  Google Scholar 

  49. Alivisatos AP. Future of nano letters early career board. Nano Lett. 2017;17(11):6507.

    CAS  Google Scholar 

  50. Wu H, Huang S, Zhu C, Zhu H, Xie Z. Excellent mechanical properties of in-situ TiC/FeCrNiCuV0.1 high entropy alloy matrix composites. Mater Lett. 2019;257:126729.

    CAS  Google Scholar 

  51. Pan J, Dai T, Lu T, Ni X, Dai J, Li M. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A. 2018;738:362.

    CAS  Google Scholar 

  52. Zhao S, He L, Fan X, Liu C, Long J, Wang L, Chang H, Wang J, Zhang W. Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel. Surf Coat Technol. 2019;375:215.

    CAS  Google Scholar 

  53. Yao Y, Huang Z, Xie P, Lacey SD, Jacob RJ, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu L. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018;359(6383):1489.

    CAS  Google Scholar 

  54. Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2019;38(12):1153.

    CAS  Google Scholar 

  55. Kumar N, Tiwary CS, Biswas K. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J Mater Sci. 2018;53(19):13411.

    CAS  Google Scholar 

  56. Wu Q, Wang Z, He F, Wang L, Luo J, Li J, Wang J. High entropy alloys: from bulk metallic materials to nanoparticles. Metall Mater Trans A. 2018;49(10):4986.

    CAS  Google Scholar 

  57. Glasscott MW, Pendergast AD, Goines S, Bishop AR, Hoang AT, Renault C, Dick JE. Publisher correction: electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat Commun. 2019;10(1):3115.

    Google Scholar 

  58. Liu M, Zhang Z, Okejiri F, Yang S, Zhou S, Dai S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv Mater Interfaces. 2019;6(7):1900015.

    CAS  Google Scholar 

  59. Qiu H, Fang G, Wen Y, Liu P, Xie G, Liu X, Sun S. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J Mater Chem A. 2019;7(11):6499.

    CAS  Google Scholar 

  60. Gao S, Hao S, Huang Z, Yuan Y, Han S, Lei L, Zhang X, Shahbazian-Yassar R, Lu J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat Commun. 2020;11(1):2016.

    CAS  Google Scholar 

  61. Bondesgaard M, Broge NLN, Mamakhel A, Bremholm M, Iversen BB. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv Funct Mater. 2019;29(50):1905933.

    CAS  Google Scholar 

  62. Wu D, Kusada K, Yamamoto T, Toriyama T, Matsumura S, Kawaguchi S, Kubota Y, Kitagawa H. Platinum-group-metal high-entropy-alloy nanoparticles. J Am Chem Soc. 2020;142(32):13833.

    CAS  Google Scholar 

  63. Paul MTY, Kim D. Saha M. Solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv Funct Mater. 2019;29(50):1905933.

    Google Scholar 

  64. Tang AY, Jankovic J, Crisci L, Pedram S. Comparison of planar and tubular flow field plates for proton exchange membrane fuel cells (PEMFCs) through Simulation S, Stumper J, Gates B D. patterning catalyst layers with microscale features by soft lithography techniques for proton exchange membrane fuel cells. ACS Appl Energy Mater. 2019;3(1):478.

    Google Scholar 

  65. Zheng Z, Yang F, Lin C, Zhu F, Shen S, Wei G, Zhang J. Voltage cycling-induced Pt degradation in proton exchange membrane fuel cells: effect of cycle profiles. ACS Appl Mater Interfaces. 2020;12(31):35088.

    CAS  Google Scholar 

  66. Liang Z, Song L, Deng S, Zhu Y, Stavitski E, Adzic RR, Chen J, Wang JX. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(Shell) electrocatalyst. J Am Chem Soc. 2019;141(24):9629.

    CAS  Google Scholar 

  67. Yang N, Zhang Z, Chen B, Huang Y, Chen J, Lai Z, Chen Y, Sindoro M, Wang AL, Cheng H, Fan Z, Liu X, Li B, Zong Y, Gu L, Zhang H. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv Mater. 2017;29(29):1700769.

    Google Scholar 

  68. Qiu HJ, Shen X, Wang JQ, Hirata A, Fujita T, Wang Y, Chen MW. Aligned nanoporous Pt–Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal. 2015;5(6):3779.

    CAS  Google Scholar 

  69. Xu C, Hao Q, Duan H. Nanoporous PdPt alloy as a highly active electrocatalyst for formic acid oxidation. J Mater Chem A. 2014;2(23):8875.

    CAS  Google Scholar 

  70. Zhang Y, Yuan X, Lyu F, Wang X, Jiang X, Cao M, Zhang Q. Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation. Rare Met. 2020;39(7):792.

    CAS  Google Scholar 

  71. Gao D, Li S, Lv Y, Zhuo H, Zhao S, Song L, Yang S, Qin Y, Li C, Wei Q, Chen G. PtNi colloidal nanoparticle clusters: tuning electronic structure and boundary density of nanocrystal subunits for enhanced electrocatalytic properties. J Catal. 2019;376:87.

    CAS  Google Scholar 

  72. Wang A, Wan H, Xu H, Tong Y, Li G. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochim Acta. 2014;127:448.

    CAS  Google Scholar 

  73. Chen X, Si C, Gao Y, Frenzel J, Sun J, Eggeler G, Zhang Z. Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction. J Power Sources. 2015;273:324.

    CAS  Google Scholar 

  74. Xiong Y, Yang Y, DiSalvo FJ, Abruña HD. Synergistic bimetallic metallic organic framework-derived Pt–Co oxygen reduction electrocatalysts. ACS Nano. 2020;14(10):13069.

    Google Scholar 

  75. Tao L, Huang B, Jin F, Yang Y, Luo M, Sun M, Liu Q, Gao F, Guo S. Atomic PdAu interlayer sandwiched into Pd/Pt core/shell nanowires achieves superstable oxygen reduction catalysis. ACS Nano. 2020;14(9):11570.

    CAS  Google Scholar 

  76. Kwon H, Kabiraz MK, Park J, Oh A, Baik H, Choi S, Lee K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018;18(5):2930.

    CAS  Google Scholar 

  77. Chang F, Bai Z, Li M, Ren M, Liu T, Yang L, Zhong C, Lu J. Strain-modulated platinum-palladium nanowires for oxygen reduction reaction. Nano Lett. 2020;20(4):2416.

    CAS  Google Scholar 

  78. Xiao M, Gao L, Wang Y, Wang X, Zhu J, Jin Z, Liu C, Chen H, Li G, Ge J, He Q, Wu Z, Chen Z, Xing W. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J Am Chem Soc. 2019;141(50):19800.

    CAS  Google Scholar 

  79. Gao L, Li X, Yao Z, Bai H, Lu Y, Ma C, Lu S, Peng Z, Yang J, Pan A, Huang H. Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J Am Chem Soc. 2019;141(45):18083.

    CAS  Google Scholar 

  80. Batchelor TAA, Pedersen JK, Winther SH, Castelli IE, Jacobsen KW, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis. Joule. 2019;3(3):834.

    CAS  Google Scholar 

  81. Wang S, Xin H. Predicting catalytic activity of high-entropy alloys for electrocatalysis. Chem. 2019;5(3):502.

    CAS  Google Scholar 

  82. Wu D, Kusada K, Kitagawa H. Recent progress in the structure control of Pd–Ru bimetallic nanomaterials. Sci Technol Adv Mater. 2016;17(1):583.

    CAS  Google Scholar 

  83. Yao Y, Huang Z, Li T, Wang H, Liu Y, Stein HS, Mao Y, Gao J, Jiao M, Dong Q, Dai J, Xie P, Xie H, Lacey SD, Takeuchi I, Gregoire JM, Jiang R, Wang C, Taylor AD, Shahbazian-Yassar R, Hu L. High-throughput, combinatorial synthesis of multimetallic nanoclusters. PNAS. 2020;117(12):6316.

    CAS  Google Scholar 

  84. Li S, Tang X, Jia H, Li H, Xie G, Liu X, Lin X, Qiu H. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J Catal. 2020;383:164.

    CAS  Google Scholar 

  85. Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun. 2015;6(1):6430.

    CAS  Google Scholar 

  86. Liu G, Zhou W, Chen B, Zhang Q, Cui X, Li B, Lai Z, Chen Y, Zhang Z, Gu L, Zhang H. Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy. 2019;66:104173.

    CAS  Google Scholar 

  87. Ledezma-Yanez I, Wallace WDZ, Sebastián-Pascual P, Climent V, Feliu JM, Koper MTM. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat Energy. 2017;2(4):17031.

    CAS  Google Scholar 

  88. Hua W, Sun H, Xu F, Wang J. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335.

    CAS  Google Scholar 

  89. Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J Am Chem Soc. 2016;138(4):1414.

    CAS  Google Scholar 

  90. Wu D, Kusada K, Yamamoto T, Toriyama T, Matsumura S, Gueye I, Seo O, Kim J, Hiroi S, Sakata O, Kawaguchi S, Kubota Y, Kitagawa H. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem Sci. 2020. https://doi.org/10.1039/d0sc02351e.

    Article  Google Scholar 

  91. Li X, Zhu P, Li Q, Xu Y, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680.

    CAS  Google Scholar 

  92. Fu L, Zeng X, Cheng G, Luo W. IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions. ACS Appl Mater, Interfaces. 2018;10(30):24993.

    CAS  Google Scholar 

  93. Kwon T, Hwang H, Sa YJ, Park J, Baik H, Joo SH, Lee K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv Funct Mater. 2017;27(7):1604688.

    Google Scholar 

  94. Li J, Chu D, Dong H, Baker DR, Jiang R. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J Am Chem Soc. 2019;142(1):50.

    Google Scholar 

  95. Cao L, Luo Q, Chen J, Wang L, Lin Y, Wang H, Liu X, Shen X, Zhang W, Liu W, Qi Z, Jiang Z, Yang J, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat Commun. 2019;10(1):4849.

    Google Scholar 

  96. Stevens MB, Enman LJ, Batchellor AS, Cosby MR, Vise AE, Trang CDM, Boettcher SW. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem Mater. 2016;29(1):120.

    Google Scholar 

  97. Shi Q, Zhu C, Du D, Lin Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev. 2019;48(12):3181.

    CAS  Google Scholar 

  98. Jin Z, Lv J, Jia H, Liu W, Li H, Chen Z, Lin X, Xie G, Liu X, Sun S, Qiu HJ. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small. 2019;15(47):1904180.

    CAS  Google Scholar 

  99. Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019;4(9):732.

    CAS  Google Scholar 

  100. Kumar N, Mukherjee S, Bezrukov A, Vandichel M, Shivanna M, Sensharma D, Bajpai A, Gasocon V, Otake K, Kitagawa S, Zaworotko M. A square lattice topology coordination network that exhibits highly selective C2H2/CO2 separation performance. SmartMat. 2020;1(1):e1008.

    Google Scholar 

  101. Zhu JY, Liang F, Yao YC, Ma WH, Yang B, Dai YN. Preparation and application of metal organic frameworks derivatives in electro-catalysis. Chin J Rare Metals. 2019;43(2):186.

    Google Scholar 

  102. Dinh C, García De Arquer FP, Sinton D, Sargent EH. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 2018;3(11):2835.

    CAS  Google Scholar 

  103. Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed. 2018;57(21):6054.

    CAS  Google Scholar 

  104. He R, Zhang A, Ding Y, Kong T, Xiao Q, Li H, Liu Y, Zeng J. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction. Adv Mater. 2018;30(7):1705872.

    Google Scholar 

  105. Wang X, Araújo J, Ju W, Bagger A, Schmies H, Kühl S, Rossmeisl J, Peter S. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat Nanotechnol. 2019;14(5):1063.

    CAS  Google Scholar 

  106. Li H, Wang L, Dai Y, Pu Z, Lao Z, Chen Y, Wang M, Zheng X, Zhu J, Zhang W, Si R, Ma C, Zeng J. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat Nanotechnol. 2018;13(5):411.

    CAS  Google Scholar 

  107. Li YC, Wang Z, Yuan T, Nam D, Luo M, Wicks J, Chen B, Li J, Li F, de Arquer FPG, Wang Y, Dinh C, Voznyy O, Sinton D, Sargent EH. Binding site diversity promotes CO2 electroreduction to ethanol. J Am Chem Soc. 2019;141(21):8584.

    CAS  Google Scholar 

  108. Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D, Sargent EH. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater. 2018;31(31):1807166.

    Google Scholar 

  109. Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610.

    CAS  Google Scholar 

  110. Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao S. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc. 2019;141(19):7646.

    CAS  Google Scholar 

  111. Yang C, Li S, Zhang Z, Wang H, Liu H, Jiao F, Guo Z, Zhang X, Hu W. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small. 2020;16(29):2001847.

    CAS  Google Scholar 

  112. Nellaiappan S, Katiyar NK, Kumar R, Parui A, Malviya KD, Pradeep KG, Singh AK, Sharma S, Tiwary CS, Biswas K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization. ACS Catal. 2020;10(6):3658.

    CAS  Google Scholar 

  113. Li XY, Qu JK, Yin HY. Electrolytic alloy-type anodes for metal-ion batteries. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01537-8.

    Article  Google Scholar 

  114. Xiao C, Lu BA, Xue P, Tian N, Zhou Z, Lin X, Lin WF, Sun SG. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule. 2020. https://doi.org/10.1016/j.joule.2020.10.002.

    Article  Google Scholar 

  115. Wang Y, Li C, Fan Z, Chen Y, Li X, Cao L, Wang C, Wang L, Su D, Zhang H, Mueller T, Wang C. Undercoordinated active sites on 4H gold nanostructures for CO2 reduction. Nano Lett. 2020;20(11):8074.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21706074 and 21972038), the Natural Science Foundation of Henan Province (No. 2023000410209), the Key Research and Promotion Project of Henan Province (Nos. 202102210261 and 202102310267) and the Top-notch Personnel Fund of Henan Agricultural University (No. 30500682).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Chen Qin, Ming-Wei Wang or Xiao-Peng Wang.

Additional information

The original online version of this article was revised due to inclusion of co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, YC., Wang, FQ., Wang, XM. et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 40, 2354–2368 (2021). https://doi.org/10.1007/s12598-021-01727-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01727-y

Keywords

Navigation