Skip to main content
Log in

Selective inhibition effects on cancer cells and bacteria of Ni–Ti–O nanoporous layers grown on biomedical NiTi alloy by anodization

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Stents made of nearly equiatomic NiTi alloy are used to treat malignant obstruction caused by cancer, but prevention of re-obstruction after surgery is still a challenge because the bare stents possess poor anticancer and antibacterial properties to inhibit cancer/bacteria invasion. The present work aims at endowing the NiTi alloy with anticancer and antibacterial abilities by surface modification. Ni–Ti–O nanoporous layers with different thicknesses were prepared on NiTi by anodization, and biological experiments were conducted to evaluate the effects on gram-positive Staphylococcus aureus, human lung epithelial cancer cells (A549), as well as human endothelial cells (EA. hy926). The nanoporous layer with a thickness of 10.1 μm inhibits growth of cancer cells and kill bacteria but shows little adverse effects on normal cells. Such selectivity is related to the larger amount of Ni ions leached from the sample in the acidic microenvironment of cancer cells in comparison with normal cells. The Ni–Ti–O nanoporous layers are promising as coatings on NiTi stents to prevent re-obstruction after surgery.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang DH, Peng F, Li JH, Qiao YQ, Li QW, Liu XY. Butyrate-inserted Ni–Ti layered double hydroxide film for H2O2-mediated tumor and bacteria killing. Mater Today. 2017;20(5):238.

    Article  CAS  Google Scholar 

  2. Qu WT, Gong H, Wang J, Nie YS, Li Y. Martensitic transformation, shape memory effect and superelasticity of Ti–xZr–(30–x)Nb–4Ta alloys. Rare Met. 2019;38(10):965.

    Article  CAS  Google Scholar 

  3. Shah T. Drug-eluting stents in malignant biliary obstruction: where do we stand? Dig Dis Sci. 2013;58:610.

    Article  Google Scholar 

  4. Hang RQ, Zhao FL, Yao XH, Tang B, Chu PK. Self-assembled anodization of NiTi alloys for biomedical applications. Appl Surf Sci. 2020;517:146118.

    Article  CAS  Google Scholar 

  5. Freitag L, Gordes M, Zarogoulidis P, Darwiche K, Franzen D, Funke F, Hohenforst-Schmidt W, Dutau H. Towards individualized tracheobronchial stents: technical, practical and legal considerations. Respiration. 2017;94(5):442.

    Article  CAS  Google Scholar 

  6. Zhang JM, Sun YH, Zhao Y, Liu YL, Yao XH, Tang B, Hang RQ. Antibacterial ability and cytocompatibility of Cu-incorporated Ni–Ti–O nanopores on NiTi alloy. Rare Met. 2019;38(6):552.

    Article  CAS  Google Scholar 

  7. Jin Z, Wu KQ, Hou JW, Yu KH, Shen YY, Guo SR. A PTX/nitinol stent combination with temperature-responsive phase-change 1-hexadecanol for magnetocaloric drug delivery: magnetocaloric drug release and esophagus tissue penetration. Biomaterials. 2018;153:49.

    Article  CAS  Google Scholar 

  8. Wang ZM, Liu JY, Wu KQ, Shen YY, Mao AW, Li J, Chen ZJ, Guo SR. Nitinol stents loaded with a high dose of antitumor 5-fluorouracil or paclitaxel: esophageal tissue responses in a porcine model. Gastrointest Endosc. 2015;82(1):153.

    Article  Google Scholar 

  9. Ge NJ, Wang DH, Peng F, Li JH, Qiao YQ, Liu XY. Poly(styrenesulfonate)-modified Ni–Ti layered double hydroxide film: a smart drug-eluting platform. ACS Appl Mater Inter. 2016;8(37):24491.

    Article  CAS  Google Scholar 

  10. Kanagamani K, Muthukrishnan P, Saravanakumar K, Shankar K, Kathiresan A. Photocatalytic degradation of environmental perilous gentian violet dye using leucaena-mediated zinc oxide nanoparticle and its anticancer activity. Rare Met. 2019;38(4):277.

    Article  CAS  Google Scholar 

  11. Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.

    Article  CAS  Google Scholar 

  12. Xiong K, Li J, Tan L, Cui ZD, Li ZY, Wu SL, Liang YQ, Zhu SL, Liu XM. Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties for rapid sterilization. Colloid Interface Sci. 2019;33:100201.

    Article  CAS  Google Scholar 

  13. Xie XZ, Mao CY, Liu XM, Tan L, Cui ZD, Yang XJ, Zhu SL, Li ZY, Yuan XB, Zheng YF, Yeung KWK, Chu PK, Wu SL. Tuning the bandgap of photo-sensitive polydopamine/Ag3PO4/graphene oxide coating for rapid, noninvasive disinfection of implants. ACS Cent Sci. 2018;4(6):724.

    Article  CAS  Google Scholar 

  14. Huang B, Liu XM, Tan L, Cui ZD, Yang XJ, Jing DD, Zheng D, Li ZY, Liang YQ, Zhu SL, Yeung KWK, Wang XB, Zhenge YF, Wu SL. “Imitative” click chemistry to form a sticking xerogel for the portable therapy of bacteria-infected wounds. Biomater Sci. 2019;7(12):5383.

    Article  CAS  Google Scholar 

  15. Huang YS, Huang HH. Effects of clinical dental implant abutment materials and their surface characteristics on initial bacterial adhesion. Rare Met. 2019;38(6):512.

    Article  CAS  Google Scholar 

  16. Li J, Liu XM, Tan L, Cui ZD, Yang XJ, Liang YQ, Li ZY, Zhu SL, Zheng YF, Yeung KWK, Wang XB, Wu SL. Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat Commun. 2019;10(1):4490.

    Article  Google Scholar 

  17. Li J, Liu XM, Zhou Z, Tan L, Wang XB, Zheng YF, Han Y, Chen DF, Yeung KWK, Cui ZD, Yang XJ, Liang YQ, Li ZY, Zhu SL, Wu SL. Lysozyme-assisted photothermal eradication of methicillin-resistant Staphylococcus aureus infection and accelerated tissue repair with natural melanosome nanostructures. ACS Nano. 2019;13(10):11153.

    Article  CAS  Google Scholar 

  18. Li M, Li LQ, Su K, Liu XM, Zhang TJ, Liang YQ, Jing DD, Yang XJ, Zheng D, Cui ZD, Li ZY, Zhu SL, Yeung KWK, Zheng YF, Wang XB, Wu SL. Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photo responsive coating within 20 min. Adv Sci. 2019;6(17):1900599.

    Article  Google Scholar 

  19. Luo Y, Li J, Liu XM, Tan L, Cui ZD, Feng XB, Yang XJ, Liang XQ, Li ZY, Zhu XL, Zheng YF, Yeung KWK, Yang C, Wang XB, Wu SL. Dual metal-organic framework heterointerface. ACS Cent Sci. 2019;5(9):1591.

    Article  CAS  Google Scholar 

  20. Xie XZ, Mao CY, Liu XM, Zhang YZ, Cui ZD, Yang XJ, Yeung KWK, Pan HB, Chu PK, Wu SL. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl Mater Interfaces. 2017;9(31):26417.

    Article  CAS  Google Scholar 

  21. Gao A, Hang RQ, Bai L, Tang B, Chu PK. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochim Acta. 2018;271:699.

    Article  CAS  Google Scholar 

  22. Ma JW, Zan R, Chen WZ, Ni JH, Zhang XN. Cell behaviors on surface of pure tantalum with nano-dimpled structure. Rare Met. 2019;38(6):543.

    Article  CAS  Google Scholar 

  23. Zhang MM, Chen JY, Li H, Wang CR. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01499-x.

    Article  Google Scholar 

  24. Hang RQ, Zong MX, Bai L, Gao A, Liu YL, Zhang XY, Huang XB, Tang B, Chu PK. Anodic growth of ultra-long Ni–Ti–O nanopores. Electrochem Commun. 2016;71:28.

    Article  CAS  Google Scholar 

  25. Luo P, Wang SN, Zhao TT, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013;32(2):113.

    Article  CAS  Google Scholar 

  26. Liu YL, Hang RY, Zhao Y, Bai L, Sun YH, Yao XH, Jia HS, Tang B, Hang RQ. The effects of annealing temperature on corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni–Ti–O nanopores on NiTi alloy. Surf Coat Technol. 2018;352:175.

    Article  CAS  Google Scholar 

  27. Song ZH, Miao WD, Chen G, Zhao GH, Ma LC. Mechanical analysis of candy-plug NiTi alloy vascular stents by finite element analysis. Chin J Rare Met. 2020;44(7):706.

    Google Scholar 

  28. Tallkvist J, Bowlus CL, Lönnerdal B. Effect of iron treatment on nickel absorption and gene expression of the divalent metal transporter (DMT1) by human intestinal Caco-2 cells. Pharmacol Toxicol. 2003;92(3):121.

    Article  CAS  Google Scholar 

  29. Mackenzie B, Takanaga H, Hubert N, Rolfs A, Hediger MA. Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem J. 2007;403(1):59.

    Article  CAS  Google Scholar 

  30. Lü XY, Lu HQ, Zhao LF, Yang YM, Lu ZH. Genome-wide pathways analysis of nickel ion-induced differential genes expression in fibroblasts. Biomaterials. 2010;31(8):1965.

    Article  Google Scholar 

  31. Lü XY, Bao X, Huang Y, Qu YH, Lu HQ, Lu ZH. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials. 2009;30(2):141.

    Article  Google Scholar 

  32. Macomber L, Hausinger RP. Mechanisms of nickel toxicity in microorganisms. Metallomics. 2011;3(11):1153.

    Article  CAS  Google Scholar 

  33. Bleriot C, Effantin G, Lagarde F, Mandrand-Berthelot M, Rodrigue A. RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. J Bacteriol. 2011;193(15):3785.

    Article  CAS  Google Scholar 

  34. Du XL, Wang WQ, Kim R, Yakota H, Nguyen H, Kim S. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry. 2001;40(47):14166.

    Article  CAS  Google Scholar 

  35. Lushchak VI. Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Phys C. 2011;153(2):175.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Fund for Shanxi “1331 Project” Key Innovative Research Team (No. PY201809), the Natural Science Foundation of Shanxi Province (No. 201801D121093) and Hong Kong Research Grants Council General Research Funds (No. CityU 11205617).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Lian Liu or Rui-Qiang Hang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YL., Sun, YH., Zhao, Y. et al. Selective inhibition effects on cancer cells and bacteria of Ni–Ti–O nanoporous layers grown on biomedical NiTi alloy by anodization. Rare Met. 41, 78–85 (2022). https://doi.org/10.1007/s12598-021-01707-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01707-2

Keywords

Navigation