Skip to main content

Advertisement

Log in

Shape-dependent hydrogen generation performance of PtPd bimetallic co-catalyst coupled with C3N4 photocatalyst

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The shape-dependent performance of metal co-catalysts in photocatalysis has been one of the research focal points in recent years. In this study, PtPd/C3N4 hybrid structures were constructed to reveal the effect of the shape of the PtPd bimetallic co-catalyst on the performance of photocatalytic hydrogen generation. PtPd nanocubes (NCs) and nanotetrahedrons (NTs) were sequentially deposited in situ on the surface of C3N4 nanosheets, establishing a strong contact interface to ensure the smooth transfer of photoinduced electrons. Ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy and photoelectrochemical experiments revealed that the PtPd NCs/C3N4 photocatalyst had comparable light absorption ability and equivalent carrier separation and transfer efficiency in comparison with the PtPd NTs/C3N4 photocatalyst, which excluded the influence of these factors on shape-dependent performance. The photocatalytic hydrogen generation results indicate that the hydrogen generation rate of the PtPd NCs/C3N4 photocatalyst is 1.33 times higher than that of the PtPd NTs/C3N4 photocatalyst, demonstrating that the cubic PtPd bimetallic co-catalyst is more conducive to hydrogen generation compared to the tetrahedral PtPd bimetallic co-catalyst.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu H, Jiang L, Wang H, Huang B, Yuan X, Huang J, Zhang J, Zeng G. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review. Small. 2019;15(23):1901008.

    Article  CAS  Google Scholar 

  2. Reddy KR, Reddy CV, Nadagouda MN, Shetti NP, Jaesool S, Aminabhavi TM. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J Environ Manage. 2019;238:25.

    Article  CAS  Google Scholar 

  3. Liu W, Liang B, Ma Y, Liu Y, Zhu A, Tan P, Xiong X, Pan J. Well-organized migration of electrons for enhanced hydrogen evolution: integration of 2D MoS2 nanosheets with plasmonic photocatalyst by a facile ultrasonic chemical method. J Colloid Interf Sci. 2017;508:559.

    Article  CAS  Google Scholar 

  4. Zhao X, Li B, Wei C, Wang X, Zhou J, Lou X. Flower-like Ag /ZnO synthesized by one pot hydrothermal method at low temperature with enhanced sunlight photocatalytic performance. Chin J Rare Met. 2019;43(6):621.

    Google Scholar 

  5. Mohanta MK, Rawat A, Dimple JN, Ahammed R, Sarkar AD. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride. Nanoscale. 2019;11(45):21880.

    Article  CAS  Google Scholar 

  6. Zhang TR, Liu G, Zhu YF. Editorial for rare metals, special issue on photocatalysis. Rare Met. 2019;38(5):359.

    Article  CAS  Google Scholar 

  7. Bai S, Jiang J, Zhang Q, Xiong Y. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev. 2015;44(10):2893.

    Article  CAS  Google Scholar 

  8. Li J, Ma A, Li H, Dong Y, Gao Y. Tunable micromorphology and photocatalytic properties of monoclinic BiVO4 prepared by bionic template method. Chin J Rare Met. 2020;44(9):912.

    Google Scholar 

  9. Yi J, She X, Song Y, Mao M, Xia K, Xu Y, Mo Z, Wu J, Xu H, Li H. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chem Eng J. 2018;335:282.

    Article  CAS  Google Scholar 

  10. Khan K, Tao X, Zhao Y, Zeng B, Shi M, Ta N, Li J, Jin X, Li R, Li C. Spatial separation of dual-cocatalysts on one dimensional semiconductors for photocatalytic hydrogen generation. J Mater Chem A. 2019;7(26):15607.

    Article  CAS  Google Scholar 

  11. Choe HR, Kim JH, Ma A, Jung H, Kim HY, Nam KM. Understanding reaction kinetics by tailoring metal co-catalysts of the BiVO4 photocatalyst. ACS Omega. 2019;4(15):16597.

    Article  CAS  Google Scholar 

  12. Chen Y, Murakami N, Chen H, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019;38(5):468.

    Article  CAS  Google Scholar 

  13. Al-Azri ZHN, Chen WT, Chan A, Jovic V, Ina T, Idriss H, Waterhouse GIN. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen generation: performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol-water mixtures. J Catal. 2015;329:355.

    Article  CAS  Google Scholar 

  14. Zhang Q, Li R, Li Z, Li A, Wang S, Liang Z, Liao S, Li C. The dependence of photocatalytic activity on the selective and nonselective deposition of noble metal cocatalysts on the facets of rutile TiO2. J Catal. 2016;337:36.

    Article  CAS  Google Scholar 

  15. Liu Y, Gu X, Qi W, Zhu H, Shan H, Chen W, Tao P, Song C, Shang W, Deng T, Wu J. Enhancing photocatalytic hydrogen evolution performance of metal/semiconductor catalyst through modulation of schottky barrier height by controlling orientation of interface. ACS Appl Mater Interfaces. 2017;9(14):12494.

    Article  CAS  Google Scholar 

  16. Nguyen NT, Ozkan S, Tomanec O, Zhou X, Zboril R, Schmuki P. Nanoporous AuPt and AuPtAg alloy co-catalysts formed by dewetting-dealloying on an ordered TiO2 nanotube surface lead to significantly enhanced photocatalytic H2 generation. J Mater Chem A. 2018;6(28):13599.

    Article  CAS  Google Scholar 

  17. Rahman ZU, Wei N, Feng M, Wang D. TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting. Int J Hydrogen Energ. 2019;44(26):13221.

    Article  CAS  Google Scholar 

  18. Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res. 2013;46(8):1900.

    Article  CAS  Google Scholar 

  19. Bai S, Xie M, Kong Q, Jiang W, Qiao R, Li Z, Jiang J, Xiong Y. Incorporation of Pd into Pt co-catalysts toward enhanced photocatalytic water splitting. Part Part Syst Charact. 2016;33(8):506.

    Article  CAS  Google Scholar 

  20. Zhou X, Li Y, Xing Y, Li J, Jiang X. Effects of the preparation method of Pt/g-C3N4 photocatalysts on their efficiency for visible-light hydrogen generation. Dalton Trans. 2019;48(40):15068.

    Article  CAS  Google Scholar 

  21. Huang X, Li Y, Li Y, Zhou H, Duan X, Huang Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition and their tunable catalytic properties. Nano Lett. 2012;12(8):4265.

    Article  CAS  Google Scholar 

  22. Sakamoto H, Imai J, Shiraishi Y, Tanaka S, Ichikawa S, Hirai T. Photocatalytic dehalogenation of aromatic halides on Ta2O5-supported Pt-Pd bimetallic alloy nanoparticles activated by visible light. ACS Catal. 2017;7(8):5194.

    Article  CAS  Google Scholar 

  23. Caudillo-Flores U, Barba-Nieto I, Gomez-Cerezo MN, Martínez-Arias A, Fernández-García M, Kubacka A. Toward the green generation of H2: binary Pt-Ru promoted NbTiO2 based photocatalysts. ACS Sustainable Chem Eng. 2019;7(18):15671.

    Article  CAS  Google Scholar 

  24. Yao J, Zheng Y, Jia X, Duan L, Wu Q, Huang C, An W, Xu Q, Yao W. Highly active Pt3Sn{110}-excavated nanocube cocatalysts for photocatalytic hydrogen generation. ACS Appl Mater Interfaces. 2019;11(29):25844.

    Article  CAS  Google Scholar 

  25. Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res. 2013;46(8):1783.

    Article  CAS  Google Scholar 

  26. Cao S, Tao F, Tang Y, Li Y, Yu J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem Soc Rev. 2016;45(17):4747.

    Article  CAS  Google Scholar 

  27. Cao S, Jiang J, Zhu B, Yu J. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys Chem Chem Phys. 2016;18(28):19457.

    Article  CAS  Google Scholar 

  28. Cao S, Li Y, Zhu B, Jaroniec M, Yu J. Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. J Catal. 2017;349:208.

    Article  CAS  Google Scholar 

  29. Luo M, Lu P, Yao W, Huang C, Xu Q, Wu Q, Kuwahara Y, Yamashita H. Shape and composition effects on photocatalytic hydrogen generation for Pt-Pd alloy cocatalysts. ACS Appl Mater Interfaces. 2016;8(32):20667.

    Article  CAS  Google Scholar 

  30. Li W, Wang L, Zhang Q, Chen Z, Deng X, Feng C, Xu L, Sun M. Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance. J Alloy Compd. 2019;808:151681.

    Article  CAS  Google Scholar 

  31. Jang E, Kim DW, Hong SH, Park YM, Park TJ. Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor. Appl Surf Sci. 2019;487:206.

    Article  CAS  Google Scholar 

  32. Wang J, Xue L, Hong M, Ni B, Niu T. Heterogeneous visible-light-induced Meerwein hydration reaction of alkenes in water using mpg-C3N4 as a recyclable photocatalyst. Green Chem. 2020;22(2):411.

    Article  CAS  Google Scholar 

  33. Zhou P, Lai J, Tang Y, Chao Y, Lin F, Guo S. Amorphous FeCoPOx nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Appl Cata B-Environ. 2018;238:161.

    Article  CAS  Google Scholar 

  34. Wang ZT, Xu JL, Zhou H, Zhang X. Facile synthesis of Zn(II)-doped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation. Rare Met. 2019;38(5):459.

    Article  CAS  Google Scholar 

  35. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116(12):7159.

    Article  CAS  Google Scholar 

  36. Liu W, Qiao L, Zhu A, Liu Y, Pan J. Constructing 2D BiOCl/C3N4 layered composite with large contact surface for visible-light-driven photocatalytic degradation. Appl Surf Sci. 2017;426:897.

    Article  CAS  Google Scholar 

  37. Wang N, Han B, Wen J, Liu M, Li X. Synthesis of novel Mn-doped Fe2O3 nanocube supported g-C3N4 photocatalyst for overall visible-light driven water splitting. Colloids Surf A. 2019;567:313.

    Article  CAS  Google Scholar 

  38. Bhunia K, Chandra M, Khilari S, Pradhan D. Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion. ACS Appl Mater Interfaces. 2019;11(1):478.

    Article  CAS  Google Scholar 

  39. Bai S, Wang X, Hu C, Xie M, Jiang J, Xiong Y. Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem Commun. 2014;50(46):6094.

    Article  CAS  Google Scholar 

  40. Gao G, Jiao Y, Waclawik ER, Du A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc. 2016;138(19):6292.

    Article  CAS  Google Scholar 

  41. Yin AX, Min XQ, Zhang YW, Yan CH. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J Am Chem Soc. 2011;133(11):3816.

    Article  CAS  Google Scholar 

  42. Sarina S, Zhu HY, Xiao Q, Jaatinen E, Jia J, Huang Y, Zheng Z, Wu H. Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. Angew Chem Int Ed. 2014;53(11):2935.

    Article  CAS  Google Scholar 

  43. Sakamoto H, Ohara T, Yasumoto N, Shiraishi Y, Ichikawa S, Tanaka S, Hirai T. Hot-electron-induced highly efficient O2 activation by Pt nanoparticles supported on Ta2O5 driven by visible light. J Am Chem Soc. 2015;137(29):9324.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Science and Technology Research Project of 2019 Annual Jiangxi Provincial Department of Education (No. GJJ190865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Wen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WW., Pan, J. & Peng, RF. Shape-dependent hydrogen generation performance of PtPd bimetallic co-catalyst coupled with C3N4 photocatalyst. Rare Met. 40, 3554–3560 (2021). https://doi.org/10.1007/s12598-021-01705-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01705-4

Keywords

Navigation