Skip to main content
Log in

Electrocatalytic oxygen reduction performances of surface Ag granular packs electrodeposited from dual-phase Ag35.5Zn64.5 precursor alloys by triangle wave potential cycling

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Surface Ag granular packs (SAgPs) have been fabricated from dual-phase Ag35.5Zn64.5 precursor alloy consisting of both ε and γ phases by using a facile one-step triangle wave potential cycling in 0.5 mol·L−1 KOH. During the continuous potential cyclic sweeping, the γ phases preferentially dissolve during the anodic scan and dominant reduction reactions of Ag cations lead to redeposition and accumulation of Ag atoms together to form SAgPs during cathodic scan. The ε phases stay inactive to form a continuous skeleton in the inner regions. SAgPs with an average particle size of 94–129 nm can be obtained at scan rates of 25, 50 and 100 mV·s−1 for 100 triangle wave potential cycles. SAgPs formed at a scan rate of 50 mV·s−1 exhibit superior oxygen reduction reaction performances with the onset potential of 0.93 V, half-wave potential of 0.72 V and an electron transfer number of 4.0. The above-mentioned SAgPs have superior stabilities as ORR catalysts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li Z, Fu JY, Feng Y, Dong CK, Liu H, Du XW. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nature Catal. 2019;2:1107.

    Article  CAS  Google Scholar 

  2. Shimizu K, Miyamoto Y, Satsuma A. Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J Catal. 2010;270(1):86.

    Article  CAS  Google Scholar 

  3. Yi QF, Li L, Yu WQ, Liu XP, Zhou ZH, Nie HD. Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation. Rare Met. 2010;29(1):26.

    Article  CAS  Google Scholar 

  4. Wang JC, Luo HS, Zhang MH, Zu XH, Zhang J, Gu YX, Yi GB. Design and fabrication of a new fluorescence enhancement system of silver nanoparticles-decorated aligned silver nanowires. Rare Met. 2019;38(12):1178.

    Article  CAS  Google Scholar 

  5. Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P, Jeon HJ, Ahn CW. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. R Soc Chem. 2016;6(42):36171.

    CAS  Google Scholar 

  6. Zhang C, Qian LH, Zhang K, Yuan SL, Xiao JW, Wang S. Hierarchical porous Ni/NiO core-shell with superior conductivity for electrochemical pseudo-capacitor and glucose sensor. J Mater Chem A. 2015;3(19):10519.

    Article  CAS  Google Scholar 

  7. Wei LY, Lu JR, Xu HZ, Patel A, Chen ZS, Chen GF. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20(5):595.

    Article  CAS  Google Scholar 

  8. Lee CL, Chio HP, Syu CM, Wu CC. Silver triangular nanoplates as electrocatalyst for oxygen reduction reaction. Electrochem Commun. 2010;12(11):1609.

    Article  CAS  Google Scholar 

  9. Pradhan N, Pal A, Pal T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloid Surf A Physicochem Eng Asp. 2002;196(2):247.

    Article  CAS  Google Scholar 

  10. NgocBui MP, Pham XH, Han KN, Li CA, Kim YS, Seong GH. Electrocatalytic reduction of hydrogen peroxide by silver particles patterned on single-walled carbon nanotubes. Sensor Actuat B-Chem. 2010;150(1):436.

    Article  CAS  Google Scholar 

  11. Kästner C, Thünemann AF. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir. 2016;32(29):7383.

    Article  CAS  Google Scholar 

  12. Hebeish A, Hashem M, El-Hady A, Hady MM, Sharaf S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym. 2013;92(1):407.

    Article  CAS  Google Scholar 

  13. Patra S, Naik AN, Pandey AK, Sen D, Mazumder S, Goswami A. Silver nanoparticles stabilized in porous polymer support: a highly active catalytic nanoreactor. Appl Catal A Gen. 2016;524:214.

    Article  CAS  Google Scholar 

  14. Zhou KR, He JR, Wang XQ, Lin J, Jing Y, Zhang WL, Chen YF. Self-assembled CoSe2 nanocrystals embedded into carbon nanowires as highly efficient catalyst for hydrogen evolution reaction. Electrochim Acta. 2017;231:626.

    Article  CAS  Google Scholar 

  15. He JR, Chen YF, Manthiram A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-Loading Li2S batteries. Adv Energy Mater. 2019;9(20):1900584.

    Article  CAS  Google Scholar 

  16. Corro G, Pal U, Ayala E, Vidal E. Diesel soot oxidation over silver-loaded SiO2 catalysts. Catal Today. 2013;212:63.

    Article  CAS  Google Scholar 

  17. Boskovic I, Mentus SV, Pjescic M. Electrochemical behavior of an Ag/TiO2 composite surfaces. Electrochim Acta. 2006;51(14):2793.

    Article  CAS  Google Scholar 

  18. Chatenet M, Genies-Bultel L, Aurousseau M, Durand R, Andolfatto F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide: comparison with platinum. J Appl Electrochem. 2002;32(10):1131.

    Article  CAS  Google Scholar 

  19. Linge JM, Erikson H, Kozlova J, Aruväli J, Sammelselg V, Tammeveski K. Oxygen reduction on electrodeposited silver catalysts in alkaline solution. J Solid State Electrochem. 2018;22(1):81.

    Article  CAS  Google Scholar 

  20. Linge JM, Eriksona H, Kozlova J, Sammelselg V, Tammeveski K. Oxygen reduction reaction on electrochemically deposited silver nanoparticles from non-aqueous solution. J Electroanal Chem. 2018;810:129.

    Article  CAS  Google Scholar 

  21. Treshchalov A, Erikson H, Puust L, Tsarenko S, Saar R, Vanetsev A, Tammeveski K, Sildos I. Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen. J Colloid Interface Sci. 2017;491:358.

    Article  CAS  Google Scholar 

  22. Ohyama J, Okata Y, Watabe N, Katagiri M, Nakamura A, Arikawa H, Shimizu K, Takeguchi T, Ueda W, Satsuma A. Oxygen reduction reaction over silver particles with various morphologies and surface chemical states. J Power Sources. 2014;245:998.

    Article  CAS  Google Scholar 

  23. Garlyyev B, Liang YC, Butt FK, Bandarenka AS. Engineering of highly active silver nanoparticles for oxygen electroreduction via simultaneous control over their shape and size. Adv Sustain Syst. 2017;1(12):1700117.

    Article  CAS  Google Scholar 

  24. Singh P, Buttry DA. Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J Phys Chem C. 2012;116(19):10656.

    Article  CAS  Google Scholar 

  25. Gupta RK, Verma AD, Sinha I, Malviya M. Oxygen reduction reaction on anisotropic silver nanoparticles in alkaline media. Chem Phys Lett. 2017;680:6.

    Article  CAS  Google Scholar 

  26. Cleve TV, Gibara E, Linic S. Electrochemical oxygen reduction reaction on Ag nanoparticles of different shapes. ChemCatChem. 2016;8(1):256.

    Article  CAS  Google Scholar 

  27. Han JJ, Li N, Zhang TY. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J Power Sources. 2009;193(2):885.

    Article  CAS  Google Scholar 

  28. Innocenti M, Zafferoni C, Lavacchi A, Becucci L, Di Benedetto F, Carretti E, Vizza F, Foresti ML. Electroactivation of microparticles of silver on glassy carbon for oxygen reduction and oxidation reactions. J Electrochem Soc. 2014;161(7):D3018.

    Article  CAS  Google Scholar 

  29. Salome S, Rego R, Oliveira MC. Development of silver-gasdiffusion electrodes for the oxygen reduction reaction by electrodeposition. Mater Chem Phys. 2013;143(1):109.

    Article  CAS  Google Scholar 

  30. Wang QY, Cui XQ, Guan WM, Zhang L, Fan XF, Shi Z, Zheng WT. Shape-dependent catalytic activity of oxygen reduction reaction (ORR) on silver nanodecahedra and nanocubes. J Power Sources. 2014;269:152.

    Article  CAS  Google Scholar 

  31. Lee CL, Tsai YL, Huang CH, Huang KL. Performance of silver nanocubes based on electrochemical surface area for catalyzing oxygen reduction reaction. Electrochem Commun. 2013;29:37.

    Article  CAS  Google Scholar 

  32. Erikson H, Sarapuu A, Tammeveski K. Oxygen reduction reaction on silver catalysts in alkaline media: a minireview. ChemElectroChem. 2019;6(1):73.

    Article  CAS  Google Scholar 

  33. Wang ZL, Ning SC, Liu P, Ding Y, Hirata A, Fujita T, Chen MW. Tuning surface structure of 3D nanoporous gold by surfactant-free electrochemical potential cycling. Adv Mater. 2017;29(41):1703601.

    Article  CAS  Google Scholar 

  34. Yang YL, Dan ZH, Liang YF, Wang Y, Qin FX, Chang H, Hara N. Morphological manipulation of tin nanostructures via pulse width modulation of potential step cycling in hydrochloric acid containing polyvinylpyrrolidone. J Electrochem Soc. 2019;166(8):D258.

    Article  CAS  Google Scholar 

  35. Gómez-Acebo T. Thermodynamic assessment of the Ag-Zn system. Calphad. 1998;22(2):203.

    Article  Google Scholar 

  36. Ming C, Park SM. Spectroelectrochemical studies on dissolution and passivation of zinc electrodes in alkaline solutions. J Electrochem Soc. 1996;143(7):2125.

    Article  Google Scholar 

  37. Park HJ, Mho SI. Electrochemical impedance spectroscopy and voltammetry of zinc in dilute alkaline solutions. Anal Sci. 1997;13:311.

    Article  CAS  Google Scholar 

  38. Tilak BV, Perkins RS, Kozlowska HA, Conway BE. Impedance and formation characteristics of electrolytically generated silver oxides: I formation and reduction of surface oxides and the role of dissolution processes. Electrochim Acta. 1972;17(8):1447.

    Article  CAS  Google Scholar 

  39. Droog JMM, Alderliesten PT, Bootsma GA. Initial stages of anodic oxidation of silver in sodium hydroxide solution studied by potential sweep voltammetry and ellipsometry. J Electroanal Chem Interfac Electrochem. 1979;99(2):173.

    Article  CAS  Google Scholar 

  40. Perkins RS, Tilak BV, Conway BE. Impedance and formation characteristics of electrolytically generated silver oxides: II Photo-effects. Electrochim Acta. 1972;17(8):1471.

    Article  CAS  Google Scholar 

  41. Burstein GT, Newman RC. Anodic behaviour of scratched silver electrodes in alkaline solution. Electrochim Acta. 1980;25(8):1009.

    Article  CAS  Google Scholar 

  42. AbdEI Rehim SS, Hassan HH, Ibrahim MAM, Amin MA. Electrochemical behaviour of a silver electrode in NaOH solutions. Monatshefte fuer Chem. 1998;129(11):1103.

    Google Scholar 

  43. Iwasaki N, Sasaki Y, Nishina Y. Ag electrode reaction in NaOH solution studied by in-situ Raman spectroscopy. Surf Sci. 1988;198(3):524.

    Article  CAS  Google Scholar 

  44. Mao LQ, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electro-catalysts. Electrochim Acta. 2003;48(8):1015.

    Article  CAS  Google Scholar 

  45. Tammeveski L, Erikson H, Sarapuu A, Kozlova J, Ritslaid P, Sammelselg V, Tammeveski K. Electrocatalytic oxygen reduction on silver nanoparticle/multi- walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochem Commun. 2012;20:15.

    Article  CAS  Google Scholar 

  46. Tiwari A, Nagaiah TC. Dioxygen reduction by nitrogen-rich mesoporous carbon bearing electrodeposited silver particles. ChemCatChem. 2016;8(2):396.

    Article  CAS  Google Scholar 

  47. Boukhvalov DW, Son YW. Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling. Nanoscale. 2012;4(2):417.

    Article  CAS  Google Scholar 

  48. Wang ZG, Li Q, Xu HX, Dahl-Petersen C, Yang Q, Cheng DJ, Cao DP, Besenbachera F, Lauritsena JV, Helvegd S, Dong MD. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy. 2018;49:634.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Advanced Metals and Materials (No. 2018-ZD04), the State Key Laboratory of Metal Material for Marine Equipment and Application (No. SKLMEA-K201806), the Natural Science Foundation of China (Nos. 51671106 and 51931008), the Natural Science Foundation of Jiangsu Province (Nos. BK20171424 and BE2019119) and the National Defense Basic Scientific Research Program of China (No. JCKY08414C020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hua Dan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, JY., Han, PP., Dan, ZH. et al. Electrocatalytic oxygen reduction performances of surface Ag granular packs electrodeposited from dual-phase Ag35.5Zn64.5 precursor alloys by triangle wave potential cycling. Rare Met. 40, 3531–3542 (2021). https://doi.org/10.1007/s12598-020-01700-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01700-1

Keywords

Navigation