Skip to main content
Log in

Effectiveness of hot deformation and subsequent annealing for β grain refinement of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High strength titanium alloys suffer from a limited combination of strength and ductility. Considering their microstructure, the coarse β grain is a detrimental factor. In the present study, the effects of hot deformation and annealing treatment on the β grain refinement of Ti–5Al–5Mo–5V–1Cr–1Fe (TC18) titanium alloy have been investigated by using electronic backscattered diffraction (EBSD) and transmission electric microscopy (TEM). Hot compression tests of TC18 alloy were performed between 1073 and 1223 K at strain rates of 0.01 and 0.10 s−1. Subsequent annealing treatments were conducted to investigate the effect of deformation microstructure on the recrystallization behavior of β grains. The results indicate that dynamic recovery (DRV) is the dominant restoration mechanism during hot deformation. Discontinuous dynamic recrystallization (dDRX) is significantly limited at a higher temperature in the β region, whereas continuous dynamic recrystallization (cDRX) of the β phase is observed at a higher strain rate in the (α + β) region. The final annealing microstructure is highly dependent on the deformation microstructure. Limited dDRX during hot deformation could not effectively refine the β grains. The refined and uniform β grains with an average grain size of 12 μm are achieved by combining hot deformation and subsequent annealing in the (α + β) region. This study provides a guide for the β grain refinement of high strength titanium alloys.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lütjering G, Williams JC. Titanium. 2nd ed. Berlin Heidelberg: Springer; 2007. 251.

    Google Scholar 

  2. Banerjee D. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.

    Article  CAS  Google Scholar 

  3. Zhang K, Dong HB, Jiang ZY, Shi S, Liu HX. Effects of cold-deformation and aging process on microstructure and properties of TB8 titanium alloy. Chin J Rare Met. 2019;43(9):904.

    Google Scholar 

  4. Gottstein G. Physical Foundations of Materials Science. Berlin: Springer; 2013. 260.

    Google Scholar 

  5. Ivasishin OM, Markovsky PE, Matviychuk YV, Semiatin SL, Ward CH, Fox S. A comparative study of the mechanical properties of high-strength β-titanium alloys. J Alloys Compd. 2008;457(1):296.

    Article  CAS  Google Scholar 

  6. Cui YM, Li CH, Zhang CS, Li RG, Ren Y, Zheng WW, Wang YD. Effect of initial microstructure on the micromechanical behavior of Ti-55531 titanium alloy investigated by in-situ high-energy X-ray diffraction. Mater Sci Eng A. 2020. https://doi.org/10.1016/j.msea.2019.138806.

    Article  Google Scholar 

  7. Xia QF, Liang YL, Yang CL, Zhang S, Ou MG. Tensile deformation behavior of TC4 titanium alloy. Chin J Rare Met. 2019;43(7):765.

    Google Scholar 

  8. Weiss I, Alvarado PJ, Fitzsimons G, DeArdo AJ. Grain refinement and coarsening during dynamic recrystallization in plain carbon steel. Scr Metall. 1983;17(6):693.

    Article  CAS  Google Scholar 

  9. Chen YJ, Li YJ, Walmsley JC, Dumoulin S, Gireesh SS, Armada S, Skaret PC, Roven HJ. Quantitative analysis of grain refinement in titanium during equal channel angular pressing. Scr Mater. 2011;64(9):904.

    Article  CAS  Google Scholar 

  10. Luo R, Zheng Q, Zhu J, Guo S, Li DS, Xu GF, Cheng XN. Dynamic recrystallization behavior of Fe–20Cr–30Ni–06Nb–2Al–Mo alloy. Rare Met. 2019;38(2):181.

    Article  CAS  Google Scholar 

  11. Zhao J, Zhong J, Yan F, Chai F, Dargusch M. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al. J Alloys Compd. 2017;710:616.

    Article  CAS  Google Scholar 

  12. Li LF, Yang WY, Sun ZQ. Dynamic recrystallization of ferrite in a low-carbon steel. Metall Mater Trans A. 2006;37(3):609.

    Article  Google Scholar 

  13. Wang K, Wu M, Yan Z, Li D, Xin R, Liu Q. Dynamic restoration and deformation heterogeneity during hot deformation of a duplex-structure TC21 titanium alloy. Mater Sci Eng. 2018;712:440.

    Article  CAS  Google Scholar 

  14. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, Mcnelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng. 1997;238(2):219.

    Article  Google Scholar 

  15. Dong R, Li J, Kou H, Tang B, Hua K, Liu S. Characteristics of a hot-rolled near β titanium alloy Ti-7333. Mater Charact. 2017;129:135.

    Article  CAS  Google Scholar 

  16. Li L, Li MQ, Luo J. Mechanism in the β phase evolution during hot deformation of Ti–5Al–2Sn–2Zr–4Mo–4Cr with a transformed microstructure. Acta Mater. 2015;94:36.

    Article  CAS  Google Scholar 

  17. Zherebtsov S, Murzinova M, Salishchev G, Semiatin S. Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing. Acta Mater. 2011;59(10):4138.

    Article  CAS  Google Scholar 

  18. Wang YL, Song XY, Ma W, Zhang WJ, Ye WJ, Hui SX. Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments. Rare Met. 2018;36(7):568.

    Article  Google Scholar 

  19. Lu ZD, Zhang CJ, Du ZX, Han JC, Zhang SZ, Yang F, Chen YY. Relationship between microstructure and tensile properties on a near-β titanium alloy after multidirectional forging and heat treatment. Rare Met. 2019;36(4):336.

    Article  Google Scholar 

  20. Gottstein G, Molodov D, Shvindlerman L. Grain boundary migration in metals: recent developments. Interface Sci. 1998;6(1):7.

    Article  CAS  Google Scholar 

  21. Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Amsterdam: Elsevier; 2004. 220.

    Google Scholar 

  22. Dillamore IL, Roberts WT. Rolling textures in fcc and bcc metals. Acta Metall. 1964;12(3):281.

    Article  CAS  Google Scholar 

  23. Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548.

    Article  CAS  Google Scholar 

  24. Li LF, Yang WY, Sun ZQ. Dynamic recrystallization of ferrite with particle-stimulated nucleation in a low-carbon steel. Metall Mater Trans A. 2013;44(5):2060.

    Article  CAS  Google Scholar 

  25. Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr. Mater Sci Eng. 2011;528(28):8277.

    Article  CAS  Google Scholar 

  26. Dikovits M, Poletti C, Warchomicka F. Deformation mechanisms in the near-β titanium alloy Ti-55531. Metall Mater Trans A. 2013;45(3):1586.

    Article  Google Scholar 

  27. Godfrey A, Cao WQ, Hansen N, Liu Q. Stored energy, microstructure, and flow stress of deformed metals. Metall Mater Trans A. 2005;36(9):2371.

    Article  Google Scholar 

  28. Fei Y, Wang XN, Zhu ZS, Li J, Shang GQ, Zhu LW. β grain growth kinetics of a new metastable β titanium alloy. Mater Sci Forum. 2016;747:844.

    Google Scholar 

  29. Ouyang DL, Du HM, Cui X, Lu SQ, Dong XJ. Grain growth behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy during isothermal β heat treatments. Rare Met. 2019;36(3):233.

    Article  Google Scholar 

  30. Shim HS, Na TW, Chung JS, Kwon SB, Gil K, Park JT, Hwang NM. Synchrotron X-ray microdiffraction of Fe–3wt%Si steel focusing on sub-boundaries within Goss grains. Scr Mater. 2016;116:71.

    Article  CAS  Google Scholar 

  31. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60(60):13.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0701302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, YM., Zheng, WW., Li, CH. et al. Effectiveness of hot deformation and subsequent annealing for β grain refinement of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy. Rare Met. 40, 3608–3615 (2021). https://doi.org/10.1007/s12598-020-01677-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01677-x

Keywords

Navigation