Skip to main content

Advertisement

Log in

Improved corrosion resistance of dental Ti50Zr alloy with (TiZr)N coating in fluoridated acidic artificial saliva

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The electrochemical corrosion behavior of the dental Ti50Zr alloy with and without nanocrystalline (TiZr)N coating was comparatively investigated in artificial saliva solutions with different pH values and fluoride ion concentrations. The chemical stability of the passive films on the coated and non-coated Ti50Zr alloy was evaluated by calculating passive film thickness. The chemical compositions and valence structures of the passive films were analyzed by X-ray photoelectron spectroscopy (XPS). The results show that the (TiZr)N-coated alloy displays distinctly decreased corrosion rate and increased impedance compared with Ti50Zr alloy in non-fluoridated and fluoridated acidic solutions. Particularly, in the solution of pH = 3.9 and 0.15% NaF-containing, the corrosion protection efficiency of (TiZr)N coating reaches 90%. The excellent corrosion resistance of the coated alloy is attributed to that the nanocrystallines in (TiZr)N coating decreases micropores and crack defects, which strongly impedes the corrosive ions diffusion and electrode process at Ti substrate/coating interface. Meanwhile, (TiZr)N coating shows good passivation behavior in acidic solution and active–passive transition behavior in fluoridated acidic solution. The coated Ti50Zr alloy with high chemical stability has potential application prospect for dental implants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chaturvedi TP. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(5):91.

    Article  CAS  Google Scholar 

  2. Matykina E, Arrabal R, Mingo B, Mohedano M, Pardo A, Merino MC. In vitro corrosion performance of PEO coated Ti and Ti6Al4V used for dental and orthopaedic implants. Surf Coat Technol. 2016;307:1255.

    Article  CAS  Google Scholar 

  3. Assis SL, Wolynec S, Costa I. The electrochemical behaviour of Ti-13Nb-13Zr alloy in various solutions. Mater Corr. 2008;59(9):739.

    CAS  Google Scholar 

  4. Houb-Dine A, Bahije L, Zaoui F. Fluoride induced corrosion affecting Titanium brackets: a systematic review. Inter Orthodontics. 2018;16:603.

    Google Scholar 

  5. Olmedo MM, Godino FJI, Liétor PF, Iglesias FA, Cobos JM. Corrosion and fracture analysis in screws of dental implants prostheses. Eng Fail Anal. 2017;82:657.

    Article  Google Scholar 

  6. Shemtov-Yona K, Rittel D. Fatigue failure of dental implants in simulated intraoral media. J Mech Behav Biomed Mater. 2016;62:636.

    Article  CAS  Google Scholar 

  7. Kolawole SK, Hai W, Zhang SY, Sun ZQ, Siddiqui MA, Ullah I, Song W, Witte F, Yang K. Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application. J Mater Sci Technol. 2020;50(8):31.

    Article  Google Scholar 

  8. Yao Y, Li X, Wang YY, Zhao W, Li G, Liu RP. Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting. J Alloys Compd. 2014;583:43.

    Article  CAS  Google Scholar 

  9. Cui WF, Shao CJ. The improved corrosion resistance and anti-wear performance of Zr–xTi alloys by thermal oxidation treatment. Surf Coat Technol. 2015;283:101.

    Article  CAS  Google Scholar 

  10. Grandin HM, Berner S, Dard M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Mater (Basel). 2012;5:1348.

    Article  CAS  Google Scholar 

  11. Barter S, Stone P, Brägger U. A pilot study to evaluate the success and survival rate of titanium-zirconium implants in partially edentulous patients: results after 24 months of follow-up. Clin Oral Implants Res. 2012;23(7):873.

    Article  Google Scholar 

  12. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A. 1998;243(1–2):244.

    Article  Google Scholar 

  13. Cordeiro JM, Faverani LP, Grandini CR, Rangele EC, Cruz NC, Junior FHN, Almeida AB, Vicente FB, Morais BRG, Barão VAR, Assunção WG. Characterization of chemically treated Ti–Zr system alloys for dental implant application. Mater Sci Eng, C. 2018;92:849.

    Article  CAS  Google Scholar 

  14. Correa DRN, Vicente FB, Donato TA, Arana-Chavezb VE, Buzalaf MAR, Grandini CR. The effect of the solute on the structure, selected mechanical properties and biocompatibility of Ti–Zr system alloys for dental applications. Mater Sci Eng, C. 2014;34:354.

    Article  CAS  Google Scholar 

  15. Sista S, Wen CE, Hodgson PD, Pande G. The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro. J Biomed Mater Res A. 2011;97(1):27.

    Article  Google Scholar 

  16. Matsumoto S, Yoneyama T, Hamanaka H. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials. J Biomed Mater Res A. 1995;29(8):943.

    Article  Google Scholar 

  17. Ho WF. Structure, mechanical properties and grindability of dental Ti–Zr alloys. J Mater Sci Mater Med. 2008;19(10):3179.

    Article  CAS  Google Scholar 

  18. Zhou YK, Jing R, Ma MZ, Liu RP. Tensile strength of Zr–Ti binary alloy. Chin Phys Lett. 2013;30(11):116201.

    Article  Google Scholar 

  19. Ikarachi Y, Toyoda K, Kobayashi E, Doi H, Yoneyama T, Hamanaka H, Tsuchiya T. Improved biocompatibility of titanium-zirconium (Ti–Zr) alloy: tissue reaction and sensitization to Ti–Zr alloy compared with pure Ti and Zr in rat implantation study. Mater Trans. 2005;36(8):2260.

    Article  Google Scholar 

  20. Cui WF, Liu YH. Fatigue behavior of Ti50Zr alloy for dental implant application. J Alloy Compd. 2019;793:212.

    Article  CAS  Google Scholar 

  21. Cordeiro JM, Beline T, Ribeiro ALR, Rangele EC, Cruze NC, Landersf R, Faveranig LP, Vazh LG, Faish LMG, Vicente FB, Grandini CR, Mathew MT, Sukotjo C, Barão VAR. Development of binary and ternary titanium alloys for dental implants. Dental Mater. 2017;33:1244.

    Article  CAS  Google Scholar 

  22. Wang ZG, Zhou YT, Wang HN, Li Y, Huang WJ. Tribocorrosion behavior of Ti-30Zr alloy for dental implants. Mater Lett. 2018;218:190.

    Article  CAS  Google Scholar 

  23. Ghasemi S, Shanaghi A, Chu PK. Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing properties. Surf Coat Technol. 2017;326:156.

    Article  CAS  Google Scholar 

  24. Raaif M. Investigating the structure and tribo-mechanical performance of PVD TiN on bearing TiN substrate constructed by rf plasma. Mater Chem Phys. 2019;224:117.

    Article  CAS  Google Scholar 

  25. Zhang CH, Gao P, Wang YM, Hu X. Growth and mechanical properties of TiN thin films deposited on HESP TA2 substrate. Chin J Rare Metals. 2018;42(8):841.

    Google Scholar 

  26. Łapaj Ł, Wendland J, Markuszewski J, Mróz A, Wiśniewski T. Retrieval analysis of titanium nitride (TiN) coated prosthetic femoral heads articulating with polyethylene. J Mech Behav Biomed Mater. 2016;55:127.

    Article  Google Scholar 

  27. Haider H, Weisenburger JN, Namavar F, Garvin KL. Why coating technologies for hip replacement systems, and the importance of testing them in vitro. Oper Tech Orthop. 2017;27(3):152.

    Article  Google Scholar 

  28. Cui WF, Cheng J, Liu ZY. Bio-tribocorrosion behavior of a nanocrystalline TiZrN coating on biomedical titanium alloy. Surf Coat Technol. 2019;369:79.

    Article  CAS  Google Scholar 

  29. Qiu YB, Lai YZ, Lin S. Quantity analysis of nickel ion release from the reused brackets detected by ICP-MS. J Oral Sci Res. 2012;28:21.

    CAS  Google Scholar 

  30. Qu BL, Wang LF. Numerical simulation for effective permittivity of two-phase composites. J Funct. Mater. 2016;47:1172.

    Google Scholar 

  31. Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T. Comparative corrosion study of Ti–Ta alloys for dental applications. Acta Biomater. 2009;5(9):3625.

    Article  CAS  Google Scholar 

  32. Li J, Bai Y, Fan ZD, Li SJ, Hao YL, Yang R, Gao YB. Effect of fluoride on the corrosion behavior of nanostructured Ti-24Nb-4Zr-8Sn alloy in acidulated artificial saliva. J Mater Sci Technol. 2018;34(9):1660.

    Article  Google Scholar 

  33. Wan GJ, Huang N. TiN and Ti-O/TiN films fabricated by PIII-D for enhancement of corrosion and wear resistance of Ti-6A1-4V. Surf Coat Technol. 2004;186(1–2):136.

    Article  CAS  Google Scholar 

  34. Milosev I, Strehblow HH, Navinsek B. Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation. Thin Solid Films. 1997;303(1–2):246.

    Article  CAS  Google Scholar 

  35. Luo YR. Comprehensive handbook of chemical bond energies. Boca Raton: CRC Press; 2007. 134.

    Book  Google Scholar 

  36. Pohrelyuk IM, Fedirko VM, Tkachuk OV, Proskurnyak RV. Corrosion resistance of Ti-6Al-4V alloy with nitride coating in Ringer’s solution. Corr Sci. 2013;66:392.

    Article  CAS  Google Scholar 

  37. Oliveira VMCA, Aguiar C, Vazquez AM, Robin A, Barboza MJR. Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings. Corr Sci. 2014;88:317.

    Article  CAS  Google Scholar 

  38. Cui WF, Niu FJ, Tan YL, Qin GW. Microstructure and tribocorrosion performance of nanocrystalline TiN graded coating on biomedical titanium alloy. Trans Nonferr Met Soc Chin. 2019;29(5):1026.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the National Natural Science Foundation of China (No. 51525101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fang Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, WF., Dong, YY., Bao, YC. et al. Improved corrosion resistance of dental Ti50Zr alloy with (TiZr)N coating in fluoridated acidic artificial saliva. Rare Met. 40, 2927–2936 (2021). https://doi.org/10.1007/s12598-020-01668-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01668-y

Keywords

Navigation